Abstract Title:

Melatonin ameliorates renal dysfunction in glyphosate- and hard water-treated mice.

Abstract Source:

Ecotoxicol Environ Saf. 2022 Aug ;241:113803. Epub 2022 Jun 29. PMID: 36068739

Abstract Author(s):

Fan Ding, Lin Zhang, Xuan Wu, Yingying Liu, Yi Wan, Jianying Hu, Xiaoyan Zhang, Qing Wu

Article Affiliation:

Fan Ding


Chronic interstitial nephritis in agricultural communities (CINAC) is a severe and widespread disease that has been associated with environmental and occupational exposure to glyphosate and hard water. However, the potential underlying mechanisms remain incompletely understood. Melatonin is reported to exert protective effects on the kidney, but whether melatonin can attenuate renal tubular injury in mice exposed to glyphosate combined with hard water is unclear. Here, mice were treated with high doses and environmentally relevant doses of glyphosate (100 mg/kg·bw and 0.7 mg/L, respectively) and/or hard water (2500 mg/L CaCOand 250 mg/L Ca, respectively) via their drinking water for 12 weeks. We found that high-dose glyphosate or hard water treatment significantly increased the levels of biomarkers of renal damage, includingβ-microglobulin, neutrophil gelatinase-associated lipid carrier protein, and/or albumin, in the urine; these increased biomarker levels were correlated with obvious morphological changes, and all of these changes were also observed in animals exposed to environmentally relevant doses of glyphosate and/or high Cawater. Melatonin (10 mg/kg·bw, intraperitoneal injection, daily for 12 weeks) administered concomitantly with high doses of glyphosate and hard water inhibited the glyphosate- and hard water-induced increases in the levels of kidney injury biomarkers and changes in morphology; this result was intriguing. Additionally, glyphosate combined with hard water at both high and environmentally relevant doses significantly upregulated the expression of the endoplasmic reticulum (ER) stress marker proteins Bip, ATF6, and PERK as well as the pyroptosis-related proteins (NLRP3 and caspase 1 signaling proteins) in renal tissues. Similarly, melatonin significantly attenuated the increased ER stress and pyroptosis induced by high doses of glyphosate and hard water. In summary, we conclude that exposure to glyphosate and hard water at both high doses and environmentally relevant doses causes renal dysfunction in mice, and this dysfunction can be attenuated by melatonin, possibly through the inhibition of ER stress and pyroptosis. Our results support the notion that melatonin may have therapeutic potential for the treatment of chronic kidney diseases.

Study Type : Animal Study

Print Options

Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2022 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.