n/a
Article Publish Status: FREE
Abstract Title:

Melatonin attenuated the brain damage and cognitive impairment partially through MT2 melatonin receptor in mice with chronic cerebral hypoperfusion.

Abstract Source:

Oncotarget. 2017 Sep 26 ;8(43):74320-74330. Epub 2017 Aug 22. PMID: 29088788

Abstract Author(s):

Tzu-Hsien Tsai, Cheng-Jei Lin, Sarah Chua, Sheng-Ying Chung, Cheng-Hsu Yang, Meng-Shen Tong, Chi-Ling Hang

Article Affiliation:

Tzu-Hsien Tsai

Abstract:

BACKGROUND: Vascular cognitive impairment (VCI) is a spectrum of cognitive impairment caused by various chronic diseases including aging, hypertension, and diabetes mellitus. Oxidative and inflammatory reactions induced by chronic cerebral hypoperfusion (CHP) are believed to cause VCI. Melatonin is reported to possess anti-oxidation and anti-inflammation effects. This study was designed to investigate the effect and mechanisms of melatonin in CHP mice model.

RESULTS: The behavioral function results revealed that CHP mice were significantly impaired when compared with the control. Melatonin improved the cognitive function, but the addition of MT2 receptor antagonist reversed the improvement. The IHC staining showed melatonin significantly improved WM lesions and gliosis in CHP mice. Again, the addition of MT2 receptor antagonist to melatonin worsened the WM lesion and gliosis. Similar results were also found for mRNA and protein expressions of oxidative reaction and inflammatory cytokines.

MATERIALS AND METHOD: Forty C57BL/6 mice were divided into four groups: Group 1: sham control; Group 2: CHP mice; Group 3: CHP with melatonin treatment; Group 4: CHP-melatonin and MT2 receptor antagonist (all groups n = 10). Working memory was assessed with Y-arm test at day-28 post-BCAS (bilateral carotid artery stenosis). All mice were sacrificed at day-30 post-BCAS. The immunohistochemical (IHC) staining was used for white matter (WM) damage and gliosis. The expression of mRNA and proteins about inflammatory and oxidative reaction were measured and compared between groups.

CONCLUSIONS: Partially through MT2 receptor, melatonin is effective for CHP-induced brain damage.

Study Type : Animal Study

Print Options


Key Research Topics

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.