Abstract Title:

Melatonin protects against lipid-induced mitochondrial dysfunction in hepatocytes and inhibits stellate cell activation during hepatic fibrosis in mice.

Abstract Source:

J Pineal Res. 2017 Mar 1. Epub 2017 Mar 1. PMID: 28247434

Abstract Author(s):

Nabanita Das, Ashok Mandala, Shamreen Naaz, Suresh Giri, Mukul Jain, Debasish Bandyopadhyay, Russel J Reiter, Sib Sankar Roy

Article Affiliation:

Nabanita Das


Lipid generates reactive oxygen species (ROS) in consequence to mitochondrial fission followed by inflammation in propagating hepatic fibrosis. The interaction of SIRT1/Mitofusin2 is critical for maintaining mitochondrial integrity and functioning, which is disrupted upon excess lipid infiltration during the progression of steatohepatitis. The complex interplay between hepatic stellate cells and steatotic hepatocytes is critically regulated by extracellular factors including increased circulating free fatty acids during fibrogenesis. Melatonin, a potent antioxidant protects against lipid-mediated mitochondrial ROS generation. Lipotoxicity induces disruption of SIRT1 and Mitofusin2 interaction leading to mitochondrial morphological disintegration in hepatocytes. Further, fragmented mitochondria leads to mitochondrial permeability transition pore opening, cell cycle arrest and apoptosis and melatonin protects against all these lipotoxicity-mediated dysfunctions. These impaired mitochondrial dynamics also enhances the cellular glycolytic flux and reduces mitochondrial oxygen consumption rate that potentiates ROS production. High glycolytic flux generates metabolically unfavorable milieu in hepatocytes leading to inflammation, which is abrogated by melatonin. The melatonin-mediated protection against mitochondrial dysfunction was also observed in high fat diet (HFD)-fed mice through restoration of enzymatic activities associated with respiratory chain and TCA cycle. Subsequently, melatonin reduces hepatic fat deposition and inflammation in HFD-fed mice. Thus, melatonin disrupts the interaction between steatotic hepatocyte and stellate cells, leading to the activation of the latter to abrogate collagen deposition. Altogether, the results of the current study document that the pharmacological intervention with low dose of melatonin could abrogate lipotoxicity-mediated hepatic stellate cell activation and prevents the fibrosis progression. This article is protected by copyright. All rights reserved.

Study Type : Animal Study

Print Options

Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2022 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.