n/a
Abstract Title:

Melittin protects against neural cell damage in rats following ischemic stroke.

Abstract Source:

Neuropeptides. 2024 Oct ;107:102462. Epub 2024 Aug 13. PMID: 39197274

Abstract Author(s):

Xiang Yao, Junlong Kang, Yufei Li, Haoran Zhang, Haoran Zhang, E Chen

Article Affiliation:

Xiang Yao

Abstract:

OBJECTIVE: In this study, we explored the neuroprotective effect of melittin (MEL) after brain ischemia using a rat model.

METHODS: The rats underwent middle cerebral artery occlusion (MCAO) for 60 min and were randomly divided into the control group, saline group, and MEL group. Rats in each group were injected intraperitoneally with MEL one day before MCAO until sacrificed. Morris water maze and rotation test were used to assess locomotor function and cognitive ability. The 9.4 Tesla MRI was used to scan and assess the infarct volume of the rat brains. Immunohistochemistry was used to detect the sites of action of MEL on microglia. Western blot and ELISA were used to measure the effect of MEL on the production of pro-inflammatory cytokines. The effect of MEL on neuronal cell apoptosis was observed by flow cytometry.

RESULTS: Compared with the saline group, MEL treatment significantly increased the density of neurons in the cerebral cortical and reduced the cerebral infarct size after MCAO (33.9 ± 8.8% vs. 15.8 ± 3.9%, P < 0.05). Meanwhile, the time for MEL-treated rats to complete the water maze task on the 11th day after MCAO was significantly shorter than that of rats in the saline group (P < 0.05). MEL treatment also prolonged the rotarod retention time on day 14 after MCAO. Immunohistochemistry analysis showed that MEL inhibited the activation of microglia and suppressed the expression of TNF-α, IL-6, and IL-1βin the brain after ischemia. MEL treatment resulted in a significant decrease in TLR4, MyD88, and NF-κB p65 levels in extracts from the ischemic cerebral cortex. Finally, MEL reduced neuronal apoptosis induced by ischemic stroke (P < 0.05).

CONCLUSION: MEL treatment promotes neurological function recovery after cerebral ischemia in rats. These effects are potentially mediated through anti-inflammatory and anti-apoptotic mechanisms.

Study Type : Animal Study

Print Options


Key Research Topics

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.