n/a
Abstract Title:

Metabonomics reveals bisphenol A affects fatty acid and glucose metabolism through activation of LXR in the liver of male mice.

Abstract Source:

Sci Total Environ. 2019 Nov 3 ;703:134681. Epub 2019 Nov 3. PMID: 31715463

Abstract Author(s):

Hainan Ji, Naining Song, Juan Ren, Wentao Li, Baoliang Xu, Haishan Li, Guolin Shen

Article Affiliation:

Hainan Ji

Abstract:

Bisphenol-A (BPA) is a representative environmental endocrine disrupting chemical that is widely used in the production of polycarbonate plastics and epoxy resins. Many studies have confirmed BPA to be closely associated with metabolic diseases, reproductive system diseases, and sex hormone-dependent cancers. In this study, we aimed to systematically elucidate the molecular action of BPA on liver fatty acid and glucose metabolism and the reasons for BPA-induced hypoglycemia through a metabonomics approach. C57BL/6 mice were orally treated with BPA (1, 10, 50, 250 μg/kg) for 35 days and the liver metabonomics and histopathology, molecular docking, mRNA expression levels and activities of enzymes were analyzed. Based on the high-resolution mass spectrometry (MS) for metabonomics and on various software and bioinformatic analysis methods, we found that BPA could affect fatty acid and glucose metabolism, block the TCA cycle, and BPA also regulated the nuclear receptor LXR caused hypoglycemia, thereby affecting the normal metabolic functions of the liver.

Study Type : Animal Study

Print Options


Key Research Topics

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.