n/a
Article Publish Status: FREE
Abstract Title:

Methanolic neem (Azadirachta indica) stem bark extract induces cell cycle arrest, apoptosis and inhibits the migration of cervical cancer cells in vitro.

Abstract Source:

BMC Complement Med Ther. 2022 Sep 10 ;22(1):239. Epub 2022 Sep 10. PMID: 36088372

Abstract Author(s):

Saurav Kumar, Vaishali Mulchandani, Jayasri Das Sarma

Article Affiliation:

Saurav Kumar

Abstract:

BACKGROUND: Cervical cancer remains one of the significant causes of mortality in women due to the limitations of current treatment strategies and their associated side effects. Investigation of alternative medicine, including phytomedicine, has shown effective anti-cancer potential with fewer side effects. Azadirachta indica (commonly known as neem) is known for its medicinal properties. The present study investigated the anti-cancer potential of methanolic neem stem bark extract (MNBE) against cervical cancer using HeLa, SiHa, and ME-180 cell lines.

METHODS: Cytotoxic effect of MNBE on cultured cell lines was evaluated by MTT and clonogenic assay. The growth-inhibiting effect of MNBE was further confirmed by performing cell cycle analysis and apoptosis assay using flow cytometry. The anti-migratory effect of MNBE was evaluated by using wound healing and Boyden chamber assay. Real-time PCR was used to determine the mRNA expression, and western blot and flow cytometry was used to determine the protein levels of growth and migration-related genes.

RESULTS: MNBE significantly suppressed the growth and survival of cervical cancer cells in a dose-dependent manner by inducing cell cycle arrest and apoptosis. In addition, the growth inhibitory effect of MNBE was specific to cervical cancer cells than normal cells. Cell cycle arrest was correlated to transcriptional downregulation of cyclin dependent kinase 1 (CDK1), cyclin A, and cyclin B. Additionally, MNBE treatment resulted in the upregulation of active caspase-3 protein and downregulation of prosurvival genes, Bcl2, and survivin at mRNA level and NFkB-p65 at the protein level. Furthermore, MNBE inhibited the migration of cervical cancer cells accompanied by modulation of migration-related genes, including zona occludens-1 (ZO-1), matrix metalloproteinase 2 (MMP2), focal adhesion kinase (FAK), N-cadherin, snail, and E-cadherin.

CONCLUSION: In summary, the present study provides the first evidence of MNBE in restricting cervical cancer cell growth and migration, which warrants further investigation for developing novel anti-cancer drugs.

Print Options


This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.