Abstract Title:

Myricetin inhibits advanced glycation end product (AGE)-induced migration of retinal pericytes through phosphorylation of ERK1/2, FAK-1, and paxillin in vitro and in vivo.

Abstract Source:

Biochem Pharmacol. 2015 Feb 15 ;93(4):496-505. Epub 2014 Oct 22. PMID: 25450667

Abstract Author(s):

Young Sook Kim, Junghyun Kim, Ki Mo Kim, Dong Ho Jung, Sojin Choi, Chan-Sik Kim, Jin Sook Kim

Article Affiliation:

Young Sook Kim


Advanced glycation end products (AGE) have been implicated in the development of diabetic retinopathy. Characterization of the early stages of diabetic retinopathy is retinal pericytes loss, which is the result of pericytes migration. In this study, we investigated the pathological mechanisms of AGE on the migration of retinal pericytes and confirmed the inhibitory effect of myricetin on migration in vitro and in vivo. Migration assays of bovine retinal pericytes (BRP) were induced using AGE-BSA and phosphorylation of Src, ERK1/2, focal adhesion kinase (FAK-1) and paxillin were determined using immunoblot analysis. Sprague-Dawley rats (6 weeks old) were injected intravitreally with AGE-BSA and morphological and immunohistochemical analysis of p-FAK-1 and p-paxillin were performed in the rat retina. Immunoblot analysis and siRNA transfection were used to study the molecular mechanism of myricetin on BRP migration. AGE-BSA increased BRP migration in a dose-dependent manner via receptor for AGEs (RAGE)-dependent activation of the Src kinase-ERK1/2 pathway. AGE-BSA-induced migration was inhibited by an ERK1/2 specific inhibitor (PD98059), but not by p38 and Jun N-terminal kinase inhibitors. AGE-BSA increased FAK-1 and paxillin phosphorylation in a dose- and time-dependent manner. These increases were attenuated by PD98059 and ERK1/2 siRNA. Phosphorylation of FAK-1 and paxillin was increased in response to AGE-BSA-induced migration of rat retinal pericytes. Myricetin strongly inhibited ERK1/2 phosphorylation and significantly suppressed pericytes migration in AGE-BSA-injected rats. Our results demonstrate that AGE-BSA participated in the pathophysiology of retinal pericytes migration likely through the RAGE-Src-ERK1/2-FAK-1-paxillin signaling pathway. Furthermore, myricetin suppressed phosphorylation of ERK 1/2-FAK-1-paxillin and inhibited pericytes migration.

Study Type : Animal Study, In Vitro Study

Print Options

Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2022 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.