Abstract Title:

N-acetylcysteine alleviated bisphenol A-induced testicular DNA hypermethylation of rare minnow (Gobiocypris rarus) by increasing cysteine contents.

Abstract Source:

Ecotoxicol Environ Saf. 2019 Feb 14 ;173:243-250. Epub 2019 Feb 14. PMID: 30772714

Abstract Author(s):

Cong Yuan, Lihong Wang, Long Zhu, Benhui Ran, Xue Xue, Zaizhao Wang

Article Affiliation:

Cong Yuan


Ubiquitous BPA exposure resulted in DNA methylation errors and oxidative stress. Numerous studies have demonstrated that oxidative stress can lead to changes in DNA methylation levels and supplementation with antioxidants, including N-acetylcysteine (NAC), was able to restore these changes. Our previous study supposed that BPA-induced de novo synthesis of glutathione (GSH) promoted DNA methylation process in Gobiocypris rarus testes. To validate this conjecture and explore the protective effects of NAC on BPA toxicity, the present study was carried out. Adult male G. rarus was treated with 225 μg LBPA and/or NAC for 7 days. The sperm motility and DNA integrity of G. rarus were determined. Meanwhile, the levels of 5-methylcytosine (5mC), GSH, hydrogen peroxide (HO), DNA methyltransferase proteins (DNMTs),γ-glutamyl cysteine synthetase (GCS), S-adenosylmethionine (SAM), S-adenosylhomocysteine (SAH), homocysteine (HCY), nicotinamide adenine dinucleotide phosphate (NADPH) and cysteine in the testes were detected. Furthermore, the activities of superoxide dismutase (SOD), catalase (CAT) and glutathioneperoxidase (GPx) were measured. Results indicated that NAC addition resulted in increase of cysteine contents and partially inhibited the BPA-induced DNA hypermethylation of G. rarus testes. In addition, the changes in DNA methylation levels in the testes after BPA and/or NAC treatment might be controlled by DNA methylation process that mediated by DNMTs. Moreover, BPA exposure caused oxidative stress in the testes and the elimination of HOmight be mainly accomplished by CAT while it changed to mainly through GPx after NAC supplement. Finally, the positive response of testicular antioxidant enzyme system and the antioxidant activity of NAC itself protected sperm motility and DNA integrity from oxidative damage in each group.

Study Type : Animal Study

Print Options

Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2021 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.