n/a
Abstract Title:

Promotion of mitochondrial protection by naringenin in methylglyoxal-treated SH-SY5Y cells: Involvement of the Nrf2/GSH axis.

Abstract Source:

Chem Biol Interact. 2019 Sep 1 ;310:108728. Epub 2019 Jun 27. PMID: 31254498

Abstract Author(s):

Marcos Roberto de Oliveira, Izabel Cristina Custódio de Souza, Cristina Ribas Fürstenau

Article Affiliation:

Marcos Roberto de Oliveira

Abstract:

Disruption of the mitochondrial function has been associated with redox impairment and triggering of cell death in nucleated human cells, as observed in several diseases. The administration of chemicals that would prevent mitochondrial dysfunction is an attractive strategy in cases of neurodegeneration, cardiovascular diseases, and metabolic disorders. Methylglyoxal (MG) is a dicarbonyl compound that exhibits an important role as a mitochondrial toxicant in neurodegenerative diseases (such as Alzheimer's disease and Parkinson's disease) and diabetes mellitus. On the other hand, naringenin (NGN; CHO) is a natural antioxidant that also presents anti-inflammatory effects in mammalian cells. In this context, we have evaluated whether and how NGN would be able to prevent the mitochondria-related bioenergetics and redox dysfunctions induced by MG in the human neuroblastoma SH-SY5Y cells. The cells were pretreated (for 2 h) with NGN (at 10-80 μM) and then challenged with MG at 500 μM for 24 h. NGN significantly attenuated the effects of MG on the mitochondrial function and redox environment in this experimental model. Moreover, NGN prevented the MG-triggered mitochondria-related cell death in SH-SY5Y cells. Nonetheless, the inhibition of the synthesis of glutathione (GSH, a major non-enzymatic antioxidant) suppressed the promotion of mitochondrial protection by NGN in MG-treated cells. We also found that the synthesis of GSH was induced by NGN through a mechanism associated with the transcription factor nuclear factor (erythroid-derived 2)-like 2 (Nrf2). Therefore, NGN caused mitochondrial protection by an Nrf2/GSH-dependent manner in SH-SY5Y cells exposed to MG.

Print Options


Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & receive The Dark Side of Wheat Ebook

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

The Dark Side of Wheat

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2023 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.