Abstract Title:

Polyphenolic extracts from Olea europea L. protect against cytokine-induced β-cell damage through maintenance of redox homeostasis.

Abstract Source:

Rejuvenation Res. 2011 Jun ;14(3):325-34. Epub 2011 Jul 11. PMID: 21745095

Abstract Author(s):

Ahmet Cumaoğlu, Nuray Ari, Murat Kartal, Çimen Karasu

Article Affiliation:

Department of Medical Biochemistry, Gazi University, Ankara, Turkey.


Various pancreatic β-cell stressors, including cytokines, are known to induce oxidative stress, resulting in apoptotic/necrotic cell death and inhibition of insulin secretion. Traditionally, olive leaves or fruits are used for treating diabetes, but the cellular mechanism(s) of their effects are not known. We examined the effects of Olea europea L. (olive) leaf and fruit extracts and their component oleuropein on cytokine-induced β-cell toxicity. INS-1, an insulin-producing β-cell line, was preincubated with or without increasing concentrations of olive leaf or fruit extract or oleuropein for 24 hr followedby exposure to a cytokine cocktail containing 0.15 ng/mL interleukin-1β (IL-1β), 1 ng/mL interferon-γ (IFN-γ), and 1 ng/mL tumor necrosis factor-α (TNF-α) for 6 hr. The cytotoxicity was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) testing. Apoptosis was quantified by detecting acridine orange/ethidium bromide-stained condensed nuclei under a fluorescent microscope. The cells exposed to cytokines had a higher apoptotic rate, a decreased viability (MTT), and an increased caspase 3/7 activity. Both extracts and oleuropein partially increased the proportion of living cells and improved the viability of cells after cytokines. The protective effects of extracts on live cell viability were mediated through the suppression of caspase 3/7 activity. Oleuropein did not decrease the amount of both apoptotic and necrotic cells, whereas extracts significantly protected cells against cytokine-induced death. Cytokines led to an increase in reactive oxygen species (ROS) generation and inhibited glutathione level, superoxide dismutase activity, and insulin secretion in INS-1. Insulin secretion was almost completely protected by leaf extract, but waspartially affected by fruit extract or oleuropein. Neither cytokines nor olive derivatives had a significant effect on cellular cytochrome c release and catalase activity. Moreover, the cells incubated with each extract or oleuropein showed a significant reduction in cytokine-induced ROS productionand ameliorated abnormal antioxidant defense. The molecular mechanism by which olive polyphenols inhibit cytokine-mediated β-cell toxicity appears to be involving the maintenance of redox homeostasis.

Print Options

Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2022 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.