Abstract Title:

Omega-3 fatty acids and decidual cell prostaglandin production in response to the inflammatory cytokine IL-1beta.

Abstract Source:

Am J Obstet Gynecol. 2006 Dec;195(6):1693-9. Epub 2006 Jun 21. PMID: 16792994

Abstract Author(s):

Ashley S Roman, Jeremy Schreher, Andrew P Mackenzie, Peter W Nathanielsz

Abstract:

OBJECTIVE: The objective of this study was to determine the effect of omega-3 fatty acids (eicosapentaenoic acid [EPA]; docosahexaenoic acid [DHA]) on prostaglandin production and prostanoid enzyme expression in cultured decidual cells exposed to interleukin-1beta (IL-1beta), a cytokine that plays a major role in inflammation. STUDY DESIGN: Decidua was obtained from human placentas of nonlaboring patients at term cesarean delivery (N = 6) and cultured by using standard cell culture techniques. Cells were preincubated in defined media with various concentrations of vehicle, DHA, or EPA for 1 hour. IL-1beta (10 ng/mL) was then added to the media, and experiments were terminated 12 hours after exposure to IL-1beta. Prostaglandin E2 (PGE2) and PGF2alpha concentrations in conditioned media were measured by enzyme-linked immunosorbent assay; cyclooxygenase-1 (COX-1), COX-2, microsomal prostaglandin E synthase (mPGES)-1, mPGES-2, and 15-hydroxy prostaglandin dehydrogenase (PGDH) expression were quantified by real-time polymerase chain reaction and immunoblotting. Groups were compared with the use of Student t test, with significance defined as P < .05. RESULTS: Preincubation with DHA decreased prostaglandin production by up to 80% when compared with controls. DHA decreased both mPGES-1 and -2 messenger RNA expression by approximately 50% (P = .02). Preincubation in DHA or EPA had no effect on COX-1, COX-2, and PGDH messenger RNA or protein expression. CONCLUSION: Under conditions simulating inflammation, supplementation with omega-3 fatty acids decreases PGE2 and PGF2alpha production in cultured decidual cells. The reduction in prostaglandin production was associated with a decreased expression of mPGES-1 and -2. These findings suggest a mechanism by which omega-3 fatty acid supplementation decreases the incidence of preterm birth in high-risk patients.

Study Type : Human Study

Print Options


This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.