Abstract Title:

Oridonin inhibits hypoxia-induced epithelial-mesenchymal transition and cell migration by the hypoxia-inducible factor-1α/matrix metallopeptidase-9 signal pathway in gallbladder cancer.

Abstract Source:

Anticancer Drugs. 2019 10 ;30(9):925-932. PMID: 31517732

Abstract Author(s):

Kunlun Chen, Jianwen Ye, Lei Qi, Yuan Liao, Renfeng Li, Shengping Song, Chuang Zhou, Ruo Feng, Wenlong Zhai

Article Affiliation:

Kunlun Chen


Hypoxia has crucial roles in cancer development and progression. Our previous study indicated that cell migration was increased in a hypoxic microenvironment in GBC-SD gallbladder cancer (GBC) cells. Oridonin, a bioactive diterpenoid compound that is isolated from the plant Rabdosia rubescens, has been identified as an anticancer agent in various types of cancer. However, its roles in cell proliferation, apoptosis, and migration in a hypoxic microenvironment and the associated regulatory mechanisms have not yet to be fully elucidated in GBC. The present study investigated the effect of oridonin on cell proliferation, apoptosis, the cell cycle and cell migration in GBC in vitro and in vivo. Furthermore, the role of oridonin in hypoxia-induced cell migration and its underlying mechanisms were explored in GBC. The results indicated that treatment with oridonin significantly suppressed cell proliferation and the metastatic ability of GBC-SD cells in a dose-dependent manner, increased the level of cell apoptosis and induced cell cycle arrest at the G0/G1 phase. Further experiments demonstrated that oridonin could inhibit hypoxia-induced epithelial-mesenchymal transition and cell migration by downregulating the expression levels of hypoxia-inducible factor (HIF)-1α/matrix metallopeptidase (MMP)-9. In addition, oridonin suppressed GBC cell growth and downregulated the expression levels of HIF-1α and MMP-9 in a GBC-SD cell xenograft model. Taken together, these results suggest that oridonin possesses anticancer properties in GBC. Notably, oridonin can suppress tumor epithelial-mesenchymal transition and cell migration by targeting the HIF-1α/MMP-9 signaling pathway.

Print Options

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2022 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.