Abstract Title:

p-Coumaric acid mediated protection of H9c2 cells from Doxorubicin-induced cardiotoxicity: Involvement of augmented Nrf2 and autophagy.

Abstract Source:

Biomed Pharmacother. 2018 Jun ;102:823-832. Epub 2018 Apr 5. PMID: 29605770

Abstract Author(s):

Mary Chacko Sunitha, Radhakrishnan Dhanyakrishnan, Bhaskara PrakashKumar, Kottayath Govindan Nevin

Article Affiliation:

Mary Chacko Sunitha


Doxorubicin (Dox) is a widely administered chemotherapeutic drug and incidences of cardiotoxicity associated with its administration have been of general concern. Extensive research proposes several mechanisms as a cause of Dox induced cardiotoxicity. However, none of these studies have been able to suggest a find one, cure all antidote for the same. To this end, several studies involving plant based compounds or natural products have gained acclaim for their ability to address at least one factor contributing to drug induced pathogenesis. We had previously reported that p-coumaric (pCA) has a protective effect on Dox induced oxidative stress in rat-derived cardiomyoblasts. In this study we investigated the effects of pCA on the regulation of Nrf-2, mitochondrial viability, autophagy and apoptosis in Doxorubicin treated H9c2 cardiomyocytes. ROS induced mitochondrial stress, changes in mitochondrial membrane potential, loss of membrane integrity; nuclear damage as single/double stranded breaks, autophagy and the effects of pre and co-treatment of pCA on Nrf-2 mediated signaling was evaluated by various approaches. The effect of pCA on drug uptake was evaluated through confocal Raman Spectroscopy. We find that nuclear translocation of Nrf-2 is prominently marked by protein-specific antibody conjugated fluorophore in Dox treated cells especially. Cell survival is mediated to a certain extent by the expression of the anti-apoptotic BCl2 in pCA treated cells. However, mRNA levels of autophagy related (Atg) genes suggest that autophagy plays a decisive role in deciding cellular fate. Caspase-3 activation is also observed in pCA treated cells which suggest an alternative function of caspase-3 in pCA mediated cell survival. Expression of antioxidant enzymes confirm the oxidative stress induced by Dox treatment in cells and the modulation of cell redox homeostasis through treatment with pCA.

Study Type : In Vitro Study

Print Options

Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2022 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.