Article Publish Status: FREE
Abstract Title:

Pinus densiflora bark extract prevents selenite-induced cataract formation in the lens of Sprague Dawley rat pups.

Abstract Source:

Mol Vis. 2017 ;23:638-648. Epub 2017 Sep 11. PMID: 28943754

Abstract Author(s):

Jun Kim, Se-Young Choung

Article Affiliation:

Jun Kim


PURPOSE: Rat pups treated with sodium selenite are typically used as an in vivo model to mimic age-related nuclear cataract. Reactive oxygen species (ROS) production, lipid peroxidation, reduction of antioxidant enzymes, crystalline proteolysis, and apoptosis are considered factors that contribute to pathogenesis of age-related nuclear cataract. In the present study, we investigated whether Pinus densiflora bark extract has potential to prevent cataract formation and elucidated the underlying mechanism.

METHODS: Sprague Dawley rats were divided into six groups (n=10). Group 1 rat pups (the control) were treated with only normal saline. The rat pups in groups 2 to 6 were given a subcutaneous injection with sodium selenite (18μmol/kg bodyweight) on postnatal (P) day 10. Group 3 rat pups (the positive control) were given gastric intubation with curcumin (80 mg/kg bodyweight) on P9, P10, and P11. The rat pups in groups 4 to 6 were given gastric intubation with P. densiflora bark extract 40 mg/kg, 80 mg/kg, and 120 mg/kg,respectively, on P9, P10, and P11.

RESULTS: This study showed that P. densiflora bark extract dose-dependently prevented cataract formation. Water-soluble protein, glutathione, superoxide dismutase, glutathione peroxidase, and catalase activity levels were found to be high, and conversely, water-insoluble protein, malondialdehyde, and Ca(2+)-ATPase were found to be low in the groups treated with P. densiflora bark extract compared to group 2. Real-time PCR analysis showedαA-crystalline, lens-specific m-calpain (Lp84), lens-specific intermediates (filensin and phakinin), and antiapoptotic factor (Bcl-2) were downregulated, and the apoptotic factors (caspase-3 and Bax) and plasma membrane Ca(2+)-ATPase (PMCA-1) were upregulated in group 2 compared to group 1. P. densiflora bark extract regulated the imbalance of these genes. The increased cleavage form of caspase-3 was lowered in the groups treated with P. densiflora bark extract. In conclusion, P. densiflora bark extract prevented selenite-induced cataract formation via regulating antioxidant enzymes, inhibiting m-calpain-induced proteolysis, and apoptosis, and thus, maintained the transparency of the lens.

CONCLUSIONS: These results suggested that P. densiflora bark extract could be a new agent for preventing age-related nuclear cataract.

Study Type : Animal Study

Print Options

Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2022 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.