Abstract Title:

Paeoniflorin ameliorates antipsychotic-induced hyperprolactinemia in rats by attenuating impairment of the dopamine D2 receptor and TGF-β1 signaling pathways in the hypothalamus and pituitary.

Abstract Source:

J Ethnopharmacol. 2020 Jul 15 ;257:112862. Epub 2020 Apr 12. PMID: 32294507

Abstract Author(s):

Xiaoqian Huang, Liying Ren, Lianbing Hou, Hua Fan, Chengliang Wang, Chunxia Wang, Yuhao Li

Article Affiliation:

Xiaoqian Huang


ETHNOPHARMACOLOGICAL RELEVANCE: Paeoniflorin, a prominent component in some Chinese formulas for hyperprolactinemia-associated disorders, has been found to inhibit prolactin secretion in prolactinoma cells.

AIM: To examine the efficacy of paeoniflorin on hyperprolactinemia and the underlying mechanisms of action.

MATERIALS AND METHODS: Hyperprolactinemia in female rats was generated by administration of olanzapine (5 mg/kg, by a gavage method, once daily, × 13 weeks). The rats were co-treated with paeoniflorin (10 and 50 mg/kg). Prolactin and TGF-β1 concentrations were detected by ELISA. Protein expression was determined by Western blot. The effect in MMQ cells was also examined.

RESULTS: Paeoniflorin inhibited olanzapine-induced increases in plasma prolactin concentration and prolactin protein overexpression in the pituitary and hypothalamus of rats. Further, paeoniflorin restored olanzapine-induced downregulation of pituitary and hypothalamic dopamine D2 receptor (D2R) protein expression. More importantly, paeoniflorin attenuated olanzapine-suppressed protein expression of transforming growth factor (TGF)-β1 and its downstream genes, type II TGF-β receptor, type I TGF-β receptor and phosphorylated SMAD3 in the tissues. However, paeoniflorin did not affect plasma TGF-β1 concentration and hepatic TGF-β1 protein expression. In accord, olanzapine-induced increase in prolactin concentration, upregulation of prolactin protein expression, and downregulation of protein expression of the D2R and TGF-β1 signals in MMQ cells were attenuated.

CONCLUSIONS: This study demonstrates that paeoniflorin ameliorates olanzapine-induced hyperprolactinemia in rats by attenuating impairment of the D2R and TGF-β1 signaling pathways in the hypothalamus and pituitary. Our findings may provide evidence to support the use of paeoniflorin-contained Chinese herbs and formulas for hyperprolactinemia and its associated disorders.

Study Type : Animal Study
Additional Links
Pharmacological Actions : Hepatoprotective : CK(5098) : AC(2264)
Problem Substances : Olanzapine : CK(10) : AC(1)

Print Options

Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2022 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.