Article Publish Status: FREE
Abstract Title:

Paeoniflorin inhibits glioblastoma growth in vivo and in vitro: a role for the Triad3A-dependent ubiquitin proteasome pathway in TLR4 degradation.

Abstract Source:

Cancer Manag Res. 2018 ;10:887-897. Epub 2018 Apr 27. PMID: 29740218

Abstract Author(s):

Zhaotao Wang, Guoyong Yu, Zhi Liu, Jianwei Zhu, Chen Chen, Ru-En Liu, Ruxiang Xu

Article Affiliation:

Zhaotao Wang


Background: Paeoniflorin, a polyphenolic compound derived from(), has exhibited anticancer activity in various human cancers, including glioblastoma. However, the mechanisms underlying the effects of this compound have not been fully elucidated. Toll-like receptor 4 (TLR4) plays an important role in the regulation of cancer cell proliferation and progression, and high TLR4 expression in glioblastoma specimens is associated with a poor prognosis. The present study aimed to investigate whether paeoniflorin suppresses glioblastoma via inhibition of TLR4 expression.

Methods: CCK-8 experiments and clone formation assay were performed to detect the cell proliferation. Western blotting was used to analyze protein expression levels. Detection of Triad3A binding with TLR4 was assessed by the immunoprecipitation. Orthotopic xenograft mouse model was used to evaluate the effect of paeoniflorin in vivo. MST was used to analyze the interaction between paeoniflorin and TLR4 protein.

Results: In our study, we found that paeoniflorin effectively inhibited glioblastoma growth and suppressed TLR4 protein levels, as well its downstream effectors both in vivo and in vitro. Moreover, when overexpressed TLR4 in glioblastoma abolished the effects of paeoniflorin on cell proliferation, migration, and invasion. Furthermore, we found that paeoniflorin decreased TLR4 protein through ubiquitination proteasome pathway (UPP)-mediated degradation in glioblastoma cells. Mechanistically, paeoniflorin promoted Triad3A to conjugate with TLR4, resulting in degradation. In addition,-shRNA abolished paeoniflorin-enhanced UPP-mediated TLR4 degradation. Finally, we found that paeoniflorin could directly bind with TLR4 protein as assessed by MST assay.

Conclusion: Our study is the first to identify a novel mechanism for the antitumor activity of paeoniflorin, specifically: it decreases tumor growth by directly targeting TLR4 and modulating the TLR4/Triad3A-dependent axis, leading to TLR4 protein degradation and inhibition of glioblastoma cell progression in vitro and in vivo. Our current findings indicate that paeoniflorin is a potential glioblastoma therapeutic agent due to its Triad3A-dependent ubiquitin degradation of TLR4.

Study Type : Animal Study, In Vitro Study

Print Options

Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2021 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.