Abstract Title:

Palmitoylethanolamide inhibits rMCP-5 expression by regulating MITF activation in rat chronic granulomatous inflammation.

Abstract Source:

Eur J Pharmacol. 2014 Feb 15 ;725:64-9. Epub 2014 Jan 16. PMID: 24440533

Abstract Author(s):

Daniele De Filippis, Annapina Russo, Daniela De Stefano, Mariateresa Cipriano, Davide Esposito, Gianluca Grassia, Rosa Carnuccio, Giulia Russo, Teresa Iuvone

Article Affiliation:

Daniele De Filippis


Chronic inflammation, a condition frequently associated with several pathologies, is characterized by angiogenic and fibrogenic responses that may account for the development of granulomatous tissue. We previously demonstrated that the chymase, rat mast cell protease-5 (rMCP-5), exhibits pro-inflammatory and pro-angiogenic properties in a model of chronic inflammation sustained by mast cells (MCs), granuloma induced by the subcutaneous carrageenan-soaked sponge implant in rat. In this study, we investigated the effects of palmitoylethanolamide (PEA), an anti-inflammatory and analgesic endogenous compound, on rMCP-5 mRNA expression and Microphtalmia-associated Transcription Factor (MITF) activation in the same model of chronic inflammation. The levels of rMCP-5 mRNA were detected using semi-quantitative RT-PCR; the protein expression of chymase and extracellular signal-regulated kinases (ERK) were analyzed by western blot; MITF/DNA binding activity and MITF phosphorylation were assessed by electrophoretic mobility shift assay (EMSA) and immunoprecipitation, respectively. The administration of PEA (200, 400 and 800µg/ml) significantly decreased rMCP-5 mRNA and chymase protein expression induced by λ-carrageenan. These effects were associated with a significant decrease of MITF/DNA binding activity and phosphorylated MITF as well as phosphorylated ERK levels. In conclusion, our results, showing the ability of PEA to inhibit MITF activation and chymase expression in granulomatous tissue, may yield new insights into the understanding of the signaling pathways leading to MITF activation controlled by PEA.

Study Type : Animal Study

Print Options

Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2021 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.