n/a
Abstract Title:

Phytochemical screening, cytotoxicity and anti-inflammatory activities of the leaf extracts from Lawsonia inermis of Indian origin to explore its potential for medicinal uses.

Abstract Source:

Med Chem. 2020 Feb 20. Epub 2020 Feb 20. PMID: 32081108

Abstract Author(s):

Anju Manuja, Nitu Rathore, Shalki Chaudhary, Balvinder Kumar

Article Affiliation:

Anju Manuja

Abstract:

BACKGROUND: Lawsonia inermis Linn popularly known as the Henna has played an important role in ayurvedic or natural herbal medicines. The presence of phyto-constituents in henna, that may affect the animal or human health adversely, need to be elucidated for L. inermis Linn species grown in India.

INTRODUCTION: The aim of this research was to perform phytochemical, cytotoxicity and anti-inflammatory studies to understand the potential of leaves of Lawsonia inermis of Indian origin to provide a way forward for therapeutic use in medicine.

METHODS: We assessed the phytochemical profile for presence of phyto-constituents (alkaloids, carbohydrates, glycosides, steroids, flavonoids, saponins, tannins, proteins/amino acids and gums/mucilage) from various extracts of the plant leaves'. The extracts were further purified by column chromatography for the isolation of plant constituents and monitored by TLC, analyzed by Fourier transform infrared FT-IR spectroscopy, H1NMR, and GC-MS analysis. Fractions were assessed for cytotoxicity and anti-inflammatory properties at various concentrations. We assessed the anti-inflammatory activity by nitric oxide production in various leaf extracts determined by Griess assay.

RESULTS: All the spectral results suggest that the compounds from the extract contain aromatic nucleus and OH group along with methoxy group, allyl as well as vinyl group. Fractions of chloroform/methanolic (7:3) leaf extract of Lawsonia inermis confirmed the presence of the two constituents i.e. fraxetin and 1(3H)-isobenzofuranone. We observed significant difference in cytotoxicity at higher concentrations in methanol and chloroform:methanol (8:2) leaf extracts (p>0.05), we could not find any significant differences amongst other leaf extracts at different concentrations. Some leaf extracts have potential cytotoxic activity on vero cells. Reducing the chloroform concentration during extraction decreases the cytotoxic effect on the cells. The nitric oxide levels decreased from 1000µg/ml concentration to lower concentrations with varying degree. Overall the highest nitric oxide production by CHCl3 (70%)/ MeOH (30%) was observed amongst various fractions at different concentrations.

CONCLUSION: The phytochemical, cytotoxicity and anti-inflammatory studies indicating the potential of leaves of the plant to provide a way further for their use in medicine. Fraxetin 1(3H)-isobenzofuranone structures were confirmed in fractions of CHCl3 (70%)/ MeOH (30%) extract as observed as a potent constituents. Some leaf extracts have potential cytotoxic activity on vero cells. Reducing the chloroform concentration during extraction decreases the cytotoxic effect on the cells.The cytotoxicity studies indicates the presence of cytotoxic compounds in some of these extracts, warranting research for fabrication of suitable formulations comprising these constituents to reduce its dose/toxicity for the use of beneficial effects of the plant components.

Study Type : In Vitro Study

Print Options


Key Research Topics

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.