A polyphenol in oat may prevent atherosclerosis by inhibiting smooth muscle cell proliferation and enhancing nitric oxide production. - GreenMedInfo Summary
Avenanthramide, a polyphenol from oats, inhibits vascular smooth muscle cell proliferation and enhances nitric oxide production.
Atherosclerosis. 2006 Jun;186(2):260-6. Epub 2005 Sep 1. PMID: 16139284
Vascular Biology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, 711 Washington Street, Boston, MA 02111, USA.
The proliferation of vascular smooth muscle cells (SMC) and impaired nitric oxide (NO) production are both crucial pathophysiological processes in the initiation and development of atherosclerosis. Epidemiological data have indicated that diets rich in whole grain foods are associated with a reduced risk of developing atherosclerosis. Avenanthramides are polyphenols found exclusively in oats (Avena sativa L.). The present study was conducted to examine the effect of synthetically prepared avenanthramide-2c on the proliferation of SMC and NO production by SMC and human aortic endothelial cells (HAEC). Avenanthramide-2c significantly inhibited serum-induced SMC proliferation. At a concentration of 120 microM, avenanthramide-2c inhibited more than 50% of SMC proliferation, as measured by [3H] thymidine incorporation, and increased the doubling time of rat SMC line (A10) from 28 to 48 h. Treatment of human SMC with 40, 80, and 120 microM avenanthramide-2c inhibited cell number increase by 41, 62, and 73%, respectively. In addition, avenanthramide-2c treatment significantly and dose-dependently increased NO production in both SMC and HAEC. At a concentration of 120 microM, avenanthramide-2c increased NO production by three-fold in SMC, and by nine-fold in HAEC. These increases were in parallel with the up-regulation of mRNA expression for endothelial NO synthase (eNOS) in both vascular SMC and HAEC. These results suggest that the avenanthramides of oats may contribute to the prevention of atherosclerosis through inhibition of SMC proliferation and increasing NO production.