n/a
Abstract Title:

Polyphenols isolated from lychee seed inhibit Alzheimer's disease-associated Tau through improving insulin resistance via the IRS-1/PI3K/Akt/GSK-3β pathway.

Abstract Source:

J Ethnopharmacol. 2020 Jan 6:112548. Epub 2020 Jan 6. PMID: 31917277

Abstract Author(s):

Rui Xiong, Xiu-Ling Wang, Jian-Ming Wu, Yong Tang, Wen-Qiao Qiu, Xin Shen, Jin-Feng Teng, Rong Pan, Ya Zhao, Lu Yu, Jian Liu, Hai-Xia Chen, Da-Lian Qin, Chong-Lin Yu, An-Guo Wu

Article Affiliation:

Rui Xiong

Abstract:

ETHNOPHARMACOLOGICAL RELEVANCE: Lychee seed, the seed of Litchi chinensis Sonn. is one of the commonly used in traditional Chinese medicine (TCM). It possesses many pharmacological effects such as blood glucose and lipid-lowering effects, liver protection, and antioxidation. Our preliminary studies have proven that an active fraction derived from lychee seed (LSF) can significantly decrease the blood glucose level, inhibit amyloid-β (Aβ) fibril formation and Tau hyperphosphorylation, and improve the cognitive function and behavior of Alzheimer's disease (AD) model rats.

AIM OF THE STUDY: The aim of this study was to identify the main active components in LSF that can inhibit the hyperphosphorylation of Tau through improving insulin resistance (IR) in dexamethasone (DXM)-induced HepG2 and HT22 cells.

MATERIALS AND METHODS: The isolation was guided by the bioactivity evaluation of the improvement effect of IR in HepG2 and HT22 cells. The mRNA and protein expressions of IRS-1, PI3K, Akt, GSK-3β, and Tau were measured by RT-PCR, Western blotting, and immunofluorescence methods, respectively.

RESULTS: After extraction, isolation, and elucidation using chromatography and spectrum technologies, three polyphenols including catechin, procyanidin A1 and procyanidin A2 were identified from fractions 3, 5, and 9 derived from LSF. These polyphenols inhibit hyperphosphorylated Tau via the up-regulation of IRS-1/PI3K/Akt and down-regulation of GSK-3β. Molecular docking result further demonstrate that these polyphenols exhibit good binding property with insulin receptor.

CONCLUSIONS: catechin, procyanidin A1, and procyanidin A2 are the main components in LSF that inhibit Tau hyperphosphorylation through improving IR via the IRS-1/PI3K/Akt/GSK-3β pathway. Therefore, the findings in the current study provide novel insight into the anti-AD mechanism of the components in LSF derived from lychee seed, which is valuable for the further development of a novel drug or nutrient supplement for the prevention and treatment of AD.

Study Type : In Vitro Study

Print Options


Key Research Topics

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.