Abstract Title:

Treatment of proteins with dietary polyphenols lowers the formation of AGEs and AGE-induced toxicity.

Abstract Source:

Food Funct. 2014 Oct ;5(10):2656-61. Epub 2014 Sep 11. PMID: 25208810

Abstract Author(s):

Xinchen Zhang, Shuting Hu, Feng Chen, Mingfu Wang

Article Affiliation:

Xinchen Zhang

Abstract:

Advanced glycation endproducts (AGEs) are a group of harmful compounds produced either endogenously or during thermal food processing. Once absorbed by humans via food intake, AGEs can cause oxidative cell damage and contribute to pathological development of various diseases. The AGE-inhibitory activity of dietary polyphenols in vitro has been extensively reported before, but the current study is pioneering in examining the antiglycation activity of five selected dietary polyphenols (phloretin, naringenin, epicatechin, chlorogenic acid, and rosmarinic acid) during the thermal protein glycation process. When added into the glucose-casein glycation model heated at 120°C for 2 h, these polyphenols were capable of inhibiting the formation of both total fluorescent AGEs and nonfluorescent carboxymethyllysine (CML). The thermal stability and transformation of polyphenols are likely important factors affecting their antioxidant activity and inhibitory efficacy of reactive carbonyl species formation. Treatment with epicatechin would lower not only AGE formation but also AGE-induced cytotoxicity and oxidative stress to human retinal pigment epithelial (ARPE-19) cells.

Print Options


This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.