Abstract Title:

Polystyrene microplastics induce gut microbiota dysbiosis and hepatic lipid metabolism disorder in mice.

Abstract Source:

Sci Total Environ. 2018 Mar 9 ;631-632:449-458. Epub 2018 Mar 9. PMID: 29529433

Abstract Author(s):

Liang Lu, Zhiqin Wan, Ting Luo, Zhengwei Fu, Yuanxiang Jin

Article Affiliation:

Liang Lu


Microplastic (MP) has become a concerning global environmental problem. It is toxic to aquatic organisms and can spread through the food chain to ultimately pose a threat to humans. In the environment, MP can interact with microbes and act as a microbial habitat. However, effects of polystyrene MP on the gut microbiota in mammals remain unclear. Here, male mice were exposed to two different sizes of polystyrene MP for 5 weeks to explore its effect. We observed that oral exposure to 1000 μg/L of 0.5 and 50 μm polystyrene MP decreased the body, liver and lipid weights in mice. Mucus secretion in the gut decreased in both sizes of polystyrene MP-treated groups. Regarding the gut microbiota, at the phylum level, polystyrene MP exposure decreased the relative abundances of Firmicutes and α-Proteobacteria in the feces. Furthermore, high throughput sequencing of the V3-V4 region of the 16S rRNA gene revealed significant changes in the richness and diversity of the gut microbiota in the cecums of polystyrene MP-treated mice. At the genus level, a total of 6 and 8 types of bacteria changed in the 0.5 and 50 μm polystyrene MP-treated groups, respectively. Furthermore, an operational taxonomic unit (OTU) analysis identified that 310 and 160 gut microbes were changed in the 0.5 and 50 μm polystyreneMP-treated groups, respectively. In addition, the hepatic triglyceride (TG) and total cholesterol (TCH) levels decreased in both 1000 μg/L 0.5 and 50 μm polystyrene MP-treated groups. Correspondingly, the relative mRNA levels of some key genes related to lipogenesis and TG synthesis decreasedin the liver and epididymal fat. These results indicated that polystyrene MP could modify the gut microbiota composition and induce hepatic lipid disorder in mice; while the mouse is a common mammal model, consequently, the health risks of MP to animals should not be ignored.

Study Type : Animal Study
Additional Links
Additional Keywords : Microplastic

Print Options

Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2023 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.