Abstract Title:

Polyunsaturated fatty acids influence inflammatory markers in a cellular model for canine osteoarthritis.

Abstract Source:

J Anim Physiol Anim Nutr (Berl). 2017 Oct 13. Epub 2017 Oct 13. PMID: 29030883

Abstract Author(s):

N Adler, A Schoeniger, H Fuhrmann

Article Affiliation:

N Adler


Although it is well recognized that dietary supplementation with fish oil improves clinical symptoms in dogs suffering from osteoarthritis, the molecular basis for the dietary benefit is not yet completely resolved in dogs. This study was designed to further clarify how polyunsaturated fatty acids (PUFA) affect key factors of cartilage degeneration in a canine cell culture system mimicking osteoarthritis. Canine chondrocytes were incubated either without or with 10 μm of eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), arachidonic acid (AA) or 3.6 μm ibuprofen (Ibu) as positive control for 6 days. After the supplementation, cells were stimulated with 10 ng/ml interleukin-1β (IL-1β) for another 48 hr to induce osteoarthritic changes, or left unstimulated. We analysed fatty acid uptake via gas-liquid chromatography, nitric oxide (NO) production via Griess assay, prostaglandin E (PGE) production via ELISA and relative gene expression of several cartilage matrix proteinases, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 via RT-qPCR. After supplementation, the chondrocytes rapidly incorporated the PUFA into their fatty acid pools. The stimulation with IL-1β caused a marked increase of most of the inflammatory markers measured. N-3 PUFA EPA reduced IL-induced gene expression of iNOS and corresponding production of NO. N-6PUFA AA also decreased iNOS and NO, but furthermore lowered gene expression of matrix metalloproteinase-3. On the other hand, AA upregulated the aggrecanase ADAMTS-5 and augmented the release of PGE. The effect of n-3 PUFA DHA turned out to be negligible. Our results reveal molecular mechanisms bywhich PUFA affect degenerative joint disease in dogs. Of particular importance is that not only EPA but also AA decreased several inflammatory markers in our model. Thus, we conclude that an appropriate balance of both n-3 and n-6 fatty acids deserves more attention in dietary interventions.

Study Type : Animal Study

Print Options

Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2022 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.