Abstract Title:

Pomegranate juice, but not an extract, confers a lower glycemic response on a high-glycemic index food: randomized, crossover, controlled trials in healthy subjects.

Abstract Source:

Am J Clin Nutr. 2017 Oct 11. Epub 2017 Oct 11. PMID: 29021286

Abstract Author(s):

Asimina Kerimi, Hilda Nyambe-Silavwe, Julia S Gauer, Francisco A Tomás-Barberán, Gary Williamson

Article Affiliation:

Asimina Kerimi


Background: Low-glycemic index diets have demonstrated health benefits associated with a reduced risk of developing type 2 diabetes.Objectives: We tested whether pomegranate polyphenols could lower the glycemic response of a high-glycemic index food when consumed together and the mechanism by which this might occur.Design: We compared the acute effect of a pomegranate juice and a polyphenol-rich extract from pomegranate (supplement) on the bread-derived postprandial blood glucose concentration in 2 randomized, crossover, controlled studies (double-blinded for the supplements), each on 16 healthy volunteers. An additional randomized, crossover, controlled study on 16 volunteers consuming constituent fruit acids in a pH-balanced solution (same pH as pomegranate) and bread was conducted to determine any contributions to postprandial responses caused by acidic beverages.Results: As primary outcome, the incremental area under the curve for bread-derived blood glucose (-33.1%± 18.1%, P = 0.000005) and peak blood glucose (25.4% ± 19.3%, P = 0.0004) were attenuated by pomegranate juice, compared with a control solution containing the equivalent amount of sugars. In contrast, the pomegranate supplement, or a solution containing the malic and citric acid components of thejuice, was ineffective. The pomegranate polyphenol punicalagin was a very effective inhibitor of human α-amylase in vitro, comparable to the drug acarbose. Neither the pomegranate extract nor the individual component polyphenols inhibited (14)C-D-glucose transport across differentiated Caco-2/TC7cell monolayers, but they inhibited uptake of (14)C-glucose into Xenopus oocytes expressing the human glucose transporter type 2. Further, some of the predicted pomegranate gut microbiota metabolites modulated (14)C-D-glucose and (14)C-deoxy-D-glucose uptake into hepatic HepG2 cells.Conclusions: These data indicate that pomegranate polyphenols, when present in a beverage but not in a supplement, can reduce the postprandial glycemic response of bread, whereas microbial metabolites from pomegranate polyphenols exhibit the potential to further modulate sugar metabolism much later in the postprandial period. This trial was registered at clinicaltrials.gov as NCT02486978, NCT02624609, and NCT03242876.

Study Type : Human Study

Print Options

Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & receive The Dark Side of Wheat Ebook

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

The Dark Side of Wheat

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2023 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.