Abstract Title:

Procyanidin B2 ameliorates free fatty acids-induced hepatic steatosis through regulating TFEB-mediated lysosomal pathway and redox state.

Abstract Source:

Free Radic Biol Med. 2018 Oct ;126:269-286. Epub 2018 Aug 22. PMID: 30142454

Abstract Author(s):

Hongming Su, Yuting Li, Dongwen Hu, Lianghua Xie, Huihui Ke, Xiaodong Zheng, Wei Chen

Article Affiliation:

Hongming Su


Procyanidin B2, a naturally occurring phenolic compound, has been reported to exert multiple beneficial functions. However, the effect of procyanidin B2 on free fatty acids (FFAs)-induced hepatic steatosis remains obscure. The present study is therefore aimed to elucidate the protective effect of procyanidin B2 against hepatic steatosis and its underlying mechanism. Herein, we reported that procyanidin B2 attenuated FFAs-induced lipid accumulation and its associated oxidative stress by scavenging excessive ROS and superoxide anion radicals, blocking loss of mitochondrial membrane potential, restoring glutathione content, and increasing activity of antioxidant enzymes (GPx, SOD and CAT) in hepatocytes. Procyanidin B2 mechanistically promoted lipid degradation via modulation of transcription factor EB (TFEB), a master regulator of lysosomal pathway. Molecular docking analysis indicated a possible ligand-binding position of procyanidin B2 with TFEB. In addition, administration of procyanidin B2 resulted in a significant reduction of hepatic fat accumulation in high-fat diet (HFD)-induced obese mice, and also ameliorated HFD-induced metabolic abnormalities, including hyperlipidemia and hyperglycemia. It was confirmed that procyanidin B2 prevented HFD-induced hepatic fat accumulation through down-regulating lipogenesis-related gene expressions (PPARγ, C/EBPα and SREBP-1c), inhibiting pro-inflammatory cytokines production (IL-6 and TNF-α) and increasing antioxidant enzymes activity (GPx, SOD and CAT). Moreover, hepatic fatty acids analysis indicated that procyanidin B2 caused a significant increase in the levels of palmitic acid, oleic acidand linoleic acid. Intriguingly, procyanidin B2 restored the decreased nuclear TFEB expression in HFD-induced liver steatosis and up-regulated its target genes involved in lysosomal pathway (Lamp1, Mcoln, Uvrag), which suggested a previously unrecognized mechanism of procyanidin B2 on ameliorating HFD-induced hepatic steatosis. Taken together, our results demonstrated that procyanidin B2 attenuated FFAs-induced hepatic steatosis through regulating TFEB-mediated lysosomal pathway and redox state, which had important implications that modulation of TFEB might be a potential therapeutic strategyfor hepatic steatosis and procyanidin B2 could represent a promising novel agent in the prevention and treatment of non-alcoholic fatty liver disease (NAFLD).

Print Options

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2022 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.