Abstract Title:

Protective effect of Lactobacillus fermentum CQPC04 on dextran sulfate sodium-induced colitis in mice is associated with modulation of the nuclear factor-κB signaling pathway.

Abstract Source:

J Dairy Sci. 2019 Nov ;102(11):9570-9585. Epub 2019 Aug 30. PMID: 31477303

Abstract Author(s):

Xianrong Zhou, Huazhi Liu, Jing Zhang, Jianfei Mu, Zsolt Zalan, Ferenc Hegyi, Krisztina Takács, Xin Zhao, Muying Du

Article Affiliation:

Xianrong Zhou


Colitis severely affects the quality of life of patients, and lactic acid bacteria have been reported to be able to improve or treat colitis. In this study, we selected a strain of Lactobacillus fermentum (CQPC04) with good resistance in vitro to evaluate its effect on improvement in mice with dextran sulfate sodium (DSS)-induced colitis. We analyzed the effects of L. fermentum CQPC04 on mice with colitis macroscopically via colon length and histopathology. We also used conventional biochemical and ELISA kits, real-time quantitative PCR (RT-qPCR), and Western blotting to analyze microscopically the effects of L. fermentum CQPC04 on related oxidant indices and pro- and anti-inflammatory cytokines in serum and colon tissue of mice. The results indicated that L. fermentum CQPC04 notably increased colon length and ameliorated pathological damage of colon tissue in colitic mice. Serum indices showed that L. fermentum CQPC04 increased the enzyme activity of total superoxide dismutase (T-SOD) and catalase (CAT) and decreased the content of malondialdehyde (MDA) and the activity of myeloperoxidase (MPO). In addition, it inhibited the release of the pro-inflammatory cytokines tumor necrosis factor-α (TNF-α), IFN-γ, IL-1β, IL-6, and IL-12, and increased the release of the anti-inflammatory cytokine IL-10 in serum. The RT-qPCR experiments confirmed that L. fermentum CQPC04 downregulated the expression of pro-inflammatory cytokine nuclear factor-κB-p65 (NF-κBp65), NF-κB inhibitor-α (IκB-α), TNF-α, IFN-γ, IL-1β, IL-6, cyclooxygenase 2 (COX-2), and inducible nitric oxide synthase (iNOS), and upregulated the expression of IL-10 in colon tissue. Western blot analysis indicated that L. fermentum CQPC04 significantly reduced expression of NF-κBp65, TNF-α, IL-1β, COX-2, and iNOS in mouse colon tissues, and increased expression of IκB-α and superoxide dismutase 2 (SOD2). Thus, L. fermentum CQPC04 could effectively alleviate the symptoms of DSS-induced colitis mice and is a potential probiotic for human experiments.

Print Options

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2022 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.