n/a
Abstract Title:

Protective Effect of Saffron in Mouse Colitis Models Through Immune Modulation.

Abstract Source:

Dig Dis Sci. 2021 Jul 17. Epub 2021 Jul 17. PMID: 34275090

Abstract Author(s):

Gulshan Singh, Yeneneh Haileselassie, Allison Ruoheng Ji, Holden Terry Maecker, Sidhartha R Sinha, Hassan Brim, Aida Habtezion, Hassan Ashktorab

Article Affiliation:

Gulshan Singh

Abstract:

BACKGROUND: People with inflammatory bowel disease (IBD) including ulcerative colitis are at risk for colorectal cancer. Despite available effective drugs used to treat IBD, many patients fail or lose response over time with some displaying drug-induced adverse events. Saffron (Crocus sativus) has been reported to have anti-inflammatory properties. Its protective role in IBD has not been explored extensively.

AIM: To establish whether saffron treatment alleviates inflammation in experimental colitis.

METHODS: Colitis was induced in C57BL/6 mice with 3% DSS and treated with either saffron doses (7.5, 15, 20, 25 mg/kg body weight) or vehicle through daily gavage. On day 11, mice were euthanized and analyzed for gross and microscopic inflammation. Distal colon segments were collected for mRNA and protein expression of HO-1 protein and GPX2, (the downstream targets of NRF-2). Nrf-2 translocation from cytosol to nucleus was confirmed by immunofluorescence, and further Nrf-2 protein expression in nuclear and cytosolic fraction of colon was analyzed by immunoblot. Immune cells were isolated from the lamina propria of mouse colon for flow cytometry-based immunophenotyping. Colitis was also induced in C57BL/6 Ahr knockout and wild type mice to explore the involvement of Ahr-dependent pathways in saffron's protective effect(s). The therapeutic effect of saffron was further validated in another TNBS model of colitis.

RESULTS: Saffron 20 mg/kg body weight showed improved colon gross and histology features and led to better body weight, colon length, histology score, and reduced disease activity index (DAI). Saffron significantly decreased pro-inflammatory macrophages (M1), while increasing anti-inflammatory macrophages (M2) and IL10 + dendritic cells. Saffron treatment also enhanced CD3 + T and CD3 + CD8 + T cells followed by increase in different CD3 + CD4 + T cells subsets like CD25 + T cells, FoxP3 + CD25 + regulatory T cells, and CD4 + FOXP3 + CD25-regulatory T cells. Immunoblot analysis showed a significant increase in HO-1/GPX2 protein expression. With saffron treatment, Nrf-2 translocation into nucleus from cytosol also supports the involvement of Nrf-2 and its downstream targets in the protective effect of saffron. Further, we demonstrated that saffron in part exertanti-inflammatory effect through activation of aryl hydrocarbon receptor (AhR)-nuclear factor erythroid 2-related factor 2 (Nrf2)-dependent pathways.

CONCLUSION: These data demonstrate saffron's therapeutic potential and its protective role in part via Ahr/Nrf-2 pathways and regulatory innate and adaptive immune cells.

Print Options


This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.