n/a
Abstract Title:

Antinociceptive and anti-inflammatory effect of sulfated polysaccharide fractions from Sargassum wightii and Halophila ovalis in male Wistar rats.

Abstract Source:

Indian J Pharmacol. 2016 Sep-Oct;48(5):562-570. PMID: 27721544

Abstract Author(s):

Yuvaraj Neelakandan, Arul Venkatesan

Article Affiliation:

Yuvaraj Neelakandan

Abstract:

AIM: The aim of this objective is to evaluate the antinociceptive and anti-inflammatory potential of sulfated polysaccharide purified fractions isolated from brown seaweed Sargassum wightii and seagrass Halophila ovalis in male Wistar rats.

SUBJECTS AND METHODS: Crude sulfated polysaccharide from S. wightii and H. ovalis was subjected to anion exchange chromatography, and the chemical composition was investigated. The antinociceptive activity of purified fractions was investigated using formalin and hot plate test. Carrageenan-induced paw edema, peritonitis model, and Freund's Complete Adjuvant-induced arthritis model were employed to determine the anti-inflammatory activity.

RESULTS: In the formalin test, there was a significant reduction in licking time in both phases of the test at a dose of 10 mg/kg. In the hot plate test, the antinociceptive effect was observed only in animals treated with 5, 10 mg/kg suggesting that the analgesic effect occurs through a central action mechanism. Sw FrIV and Ho FrIV significantly inhibited paw edema induced by carrageenan, especially at 3 h after treatment and potentially decreased neutrophil migration at 10 mg/kg, respectively. In Freund's adjuvant-induced arthritic rats, a significant reduction in paw volume was observed in Sw FrIV and Ho FrIV-treated groups (10 mg/kg).

CONCLUSION: Purified components from S. wightii and H. ovalis have strong antinociceptive and anti-inflammatory effect on animal model. However, to determine the molecular mechanism, it is necessary to investigate the effect of purified fractions on inhibition of nitric oxide synthase expression mediated by inhibiting the phosphorylation of various signal proteins in lipopolysaccharide-stimulated RAW264.7 cells.

Study Type : Animal Study

Print Options


Key Research Topics

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.