n/a
Abstract Title:

Quercetin Attenuates Decrease of Thioredoxin Expression Following Focal Cerebral Ischemia and Glutamate-induced Neuronal Cell Damage.

Abstract Source:

Neuroscience. 2020 Jan 21 ;428:38-49. Epub 2019 Dec 23. PMID: 31874239

Abstract Author(s):

Dong-Ju Park, Ju-Bin Kang, Fawad-Ali Shah, Yeung-Bae Jin, Phil-Ok Koh

Article Affiliation:

Dong-Ju Park

Abstract:

Quercetin is a bioactive flavonoid which abundantly exists in vegetables and fruits. Quercetin exerts a neuroprotective effect against cerebral ischemia. Thioredoxin acts as antioxidant by regulating redox signaling. This study investigated whether quercetin regulates thioredoxin expression in focal cerebral ischemia and glutamate-induced neuronal cell death. Male Sprague Dawley rats (210-230 g) were intraperitoneally injected with vehicle or quercetin (10 mg/kg) 1 h prior to middle cerebral artery occlusion (MCAO). Cerebral cortex was collected 24 h after MCAO. MCAO led to neurological movement deficits, brain edema, and serious histopathological damages in cerebral cortex, andquercetin alleviated these damages following MCAO. We observed the change of thioredoxin expression in MCAO animals with quercetin using proteomic approach, reverse-transcription PCR, and Western blot analyses. Thioredoxin expression decreased in vehicle-treated MCAO animals, while quercetin attenuated this decrease. Moreover, quercetin treatment alleviated the decrease in the number of thioredoxin-positive cells in cerebral cortex of MCAO animals. Furthermore, immunoprecipitation analysis demonstrated that interaction of apoptosis signal-regulating kinase 1 (ASK1) and thioredoxin was decreased in MCAO animals with vehicle, while quercetin prevented MCAO-induced decrease in these binding. In addition, quercetin also alleviated the reduction of cell viability and the decrease in thioredoxin expression in glutamate-treated hippocampal cell line and primary cultures of cortical neurons. However in thioredoxin-silenced cortical neuron, anti-apoptotic effect of quercetin was decreased. Thus, changes of thioredoxin expression by quercetin may contribute to the neuroprotective effect of quercetin in focal cerebral ischemia. Our findings suggest that quercetin mediates its neuroprotectivefunction by regulation of thioredoxin expression and maintenance of interaction between ASK1 and thioredoxin.

Study Type : Animal Study

Print Options


Key Research Topics

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.