Abstract Title:

Antimicrobial activity of photodynamic therapy in combination with colistin against a pan-drug resistant Acinetobacter baumannii isolated from burn patient.

Abstract Source:

Photodiagnosis Photodyn Ther. 2017 Jun ;18:1-5. Epub 2017 Jan 12. PMID: 28088439

Abstract Author(s):

Ebrahim Boluki, Hossein Kazemian, Hadi Peeridogaheh, Mohammad Yousef Alikhani, Sima Shahabi, Leili Beytollahi, Roghayeh Ghorbanzadeh

Article Affiliation:

Ebrahim Boluki


Nosocomially-acquired multi-, extensively-, and pandrug resistant (MDR, XDR, and PDR) strains of microorganisms such as Acinetobacter baumannii remain a serious cause of infection and septic mortality in burn patients. Treatment of patients with nosocomial burn wound infections is often complicated by drug-resistant strains of A. baumannii. Today, many researchers are focusing on the investigation of novel non-antibiotic strategies such as photodynamic therapy (PDT). We report a new PDT strategy that suppresses colistin resistance in PDR A. baumannii by interfering with the expression of a pmrA/pmrB two-component system. In the current study, A. baumannii with a PDR feature isolated from a burn patient was used as a test strain. PDT was carried out using toluidine blue O (TBO) and light-emitting diode (LED) as a photosensitizer and radiation source, respectively. The antimicrobial susceptibility profiles were assessed for cells surviving PDT. The effects of sub-lethal PDT (sPDT) on the expression of the pmrA/pmrB two-component signal transduction system were evaluated by real-time quantitative reverse transcription PCR. Results of drug susceptibly testing (DST) in LED and TBO groups separately showed that the bacteria were resistant to all tested antibiotics, while the DST result of the LED+TBO group showed highly declining bacterial growth when compared with the control group. Reduction in the expression of pmrA and pmrB was observed in the treated strains after sPDT. This represents the first conclusive example of a direct role for the PDT in breaking antibiotic resistance by directly modulating two-component system activity.

Study Type : Human In Vitro

Print Options

Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2022 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.