Abstract Title:

Neuroprotective effect of paeoniflorin on okadaic acid-induced tau hyperphosphorylation via calpain/Akt/GSK-3β pathway in SH-SY5Y cells.

Abstract Source:

Brain Res. 2018 07 1 ;1690:1-11. Epub 2018 Mar 27. PMID: 29596798

Abstract Author(s):

Xiao-Hui Ma, Wen-Jun Duan, You-Sheng Mo, Jun-Li Chen, Shi Li, Wei Zhao, Lei Yang, Sui-Qing Mi, Xin-Liang Mao, Hong Wang, Qi Wang

Article Affiliation:

Xiao-Hui Ma


Abnormal phosphorylation of tau, one of the most common symptoms of dementia, has become increasingly important in the study of the etiology and development of Alzheimer's disease. Paeoniflorin, the main bioactive component of herbaceous peony, is a monoterpene glycoside, which has been reported to exert beneficial effects on neurodegenerative disease. However, the effect of paeoniflorin on tauopathies remains ambiguous. SH-SY5Y cells were treated with okadaic acid (OA) for 8 h to induce tau phosphorylation and no cell death was observed. Optical microscopy results showed that paeoniflorin ameliorated okadaic acid induced morphological changes, including cell swelling and synapsis shortening. Western blotting data illustrated that paeoniflorin reversed okadaic acid induced tau hyperphosphorylation, which was enhanced by inhibiting the activities of calpain, Akt and GSK-3β. Transmission electron microscopy results showed that paeoniflorin alone can reduce the number of autophagosomes and stabilize the microtubule structure. In addition, calpastain and paeoniflorin enhance the effect of paeoniflorin on stabilizing microtubules. In addition, calpastain markedly enhanced the effect of paeoniflorin on reversing okadaic acid-lowered fluorescence intensity of both MAP-2 and β III-tubulin, two microtubule-associated proteins. This study shows that paeoniflorin protected SH-SY5Y cells against okadaic acid assault by interfering with the calpain/Akt/GSK-3β-related pathways, in which autophagy might be involved. Besides, paeoniflorin is found to relieve the stress response of the microtubule structure system caused by okadaic acid treatment. The results presented in this study suggest that paeoniflorin potentially plays an important role in tauopathies.

Study Type : In Vitro Study

Print Options

Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2021 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.