Abstract Title:

Long-term epigenetic alterations in a rat model of Gulf War Illness.

Abstract Source:

Neurotoxicology. 2016 Jul ;55:20-32. Epub 2016 May 11. PMID: 27179617

Abstract Author(s):

Lisa M Pierce, Wendy E Kurata, Karen W Matsumoto, Margaret E Clark, Douglas M Farmer

Article Affiliation:

Lisa M Pierce


Gulf War Illness (GWI) is a chronic, multisymptom illness that affects 25% of the 700,000 US veterans deployed to the Persian Gulf during the 1990-1991 Gulf War. Central nervous system impairments are among the most common symptoms reported, including memory dysfunction and depression. After 25 years, the diagnosis remains elusive, useful treatments are lacking, and the cause is poorly understood, although exposures to pyridostigmine bromide (PB) and pesticides are consistently identified to be among the strongest risk factors. Epigenetic changes including altered microRNA (miRNA) expression and DNA methylation play an important role in learning, memory, and emotion regulation and have been implicated in various neurological disorders. In this study, we used an established rat model of GWI to determine whether 1) chronic alterations in miRNA expression and global DNA methylation and DNA hydroxymethylation are mechanisms involved in the pathobiology of GWI, and 2) plasma exosome small RNAs may serve as potential noninvasive biomarkers of this debilitating disease. One year after a 28-day exposure regimen of PB, DEET (N,N-diethyl-3-methylbenzamide), permethrin, and mild stress, expression of 84 mature miRNAs and global 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) content were analyzed in the brains of GWI rats and vehicle controls by PCR array and enzyme-linked immunosorbent assay, respectively. Plasma exosome RNA next-generation sequencing analysis was performed in pooled samples to discover potential noninvasive biomarkers. We found that combined exposure to low doses of GW-related chemicals and mild stress caused epigenetic modifications in the brain that persisted one year after exposure, including increased expression of miR-124-3p and miR-29b-3p in the hippocampus and regional alterations in global 5mC and 5hmC content. GW-relevant exposures also induced the differential expression of two piwi-interacting RNAs (piRNAs) in circulation (piR-007899 and piR-019162). Results from this study implicate a role for epigenetic alterations in GWI. Evaluation of the diagnostic potential of plasma exosome RNAs in veterans with GWI is warranted.

Study Type : Animal Study

Print Options

Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2022 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.