n/a
Abstract Title:

Resveratrol attenuates autophagy and inflammation after traumatic brain injury by activation of PI3K/Akt/mTOR pathway in rats.

Abstract Source:

Folia Neuropathol. 2022 ;60(2):153-164. PMID: 35950468

Abstract Author(s):

Yan Feng, Yaru Ju, Zhongjie Yan, Mingjun Ji, Jingchen Li, Qiang Wu, Ming Yang, Guozhu Sun

Article Affiliation:

Yan Feng

Abstract:

AIM OF THE STUDY: Accumulating studies have demonstrated that neuronal autophagy and inflammation are crucial for hippocampus development in rats subjected to traumatic brain injury (TBI). Therefore, we have investigated whether resveratrol is protective against brain damage through the attenuation of neuronal autophagy and inflammation, and explored underlying mechanisms.

MATERIAL AND METHODS: Rats were injected with resveratrol (50 mg/kg, i.p.), following controlled cortical impact (CCI) injury. Brain water content, behavioral studies, and mNSS score were measured to assess the effects of resveratrol treatment. Autophagy-related proteins and inflammatory cytokines in the hippocampus were detected by Western blotting at 12, 24, and 48 hours after TBI. In addition, spatial distribution of LC3 was evaluated with immunofluorescence analysis 24 hours after injury. Finally, factors related to PI3K/Akt/mTOR signaling pathway were assessed at the same time in the hippocampus.

RESULTS: Our results depicted that resveratrol could reduce the cerebral edema caused by TBI and improve the recovery of functional deficits in rats. Resveratrol was also able to remarkably reduce the expression of LC3 II and Beclin-1, while increased the expression levels of P62 in the hippocampus. Moreover, we found that interleukin b (IL-1b) and tumor necrosis factor a (TNF-a) were significantly decreased in resveratrol-treated rats. Indeed, we observed an activation of the PI3K/Akt/mTOR pathway after TBI, which may be related to the neuro-protective effect of resveratrol.

CONCLUSIONS: Data presented herein support that resveratrol is a potential treatment against TBI through the inhibition of neuronal autophagy and inflammation by activation of PI3K/Akt/mTOR pathway.

Print Options


This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.