Abstract Title:

Resveratrol-induced apoptotic death in human U251 glioma cells.

Abstract Source:

Biol Pharm Bull. 2001 Feb;24(2):151-4. PMID: 15827328

Abstract Author(s):

Hao Jiang, Lijie Zhang, Jarret Kuo, Kelly Kuo, Subhash C Gautam, Laurent Groc, Alba I Rodriguez, David Koubi, Tangella Jackson Hunter, George B Corcoran, Michael D Seidman, Robert A Levine

Article Affiliation:

William T. Gossett Neurology Laboratories, Henry Ford Health System, Detroit, Michigan 48202, USA.

Abstract:

Resveratrol (trans-3,4',5-trihydroxystilbene) is a naturally occurring polyphenolic compound highly enriched in grapes, peanuts, red wine, and a variety of food sources. Resveratrol has antiinflammatory and antioxidant properties, and also has potent anticancer properties. Human glioma U251 cells were used to understand the molecular mechanisms by which resveratrol acts as an anticancer agent, since glioma is a particularly difficult cancer to treat and eradicate. Our data show that resveratrol induces dose- and time-dependent death of U251 cells, as measured by lactate dehydrogenase release and internucleosomal DNA fragmentation assays. Resveratrol induces activation of caspase-3 and increases the cleavage of the downstream caspase substrate, poly(ADP-ribose) polymerase. Resveratrol-induced DNA fragmentation can be completely blocked by either a general caspase inhibitor (Z-VAD-FMK) or a selective caspase-3 inhibitor (Z-DEVD-FMK), but not by a selective caspase-1 inhibitor. Resveratrol induces cytochrome c release from mitochondria to the cytoplasm and activation of caspase-9. Resveratrol also increases expression of proapoptotic Bax and its translocation to the mitochondria. Resveratrol inhibits U251 proliferation, as measured by MTS assay [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt], and induces G0/G1 growth arrest, as determined by flow cytometry. The cyclin-dependent kinase inhibitor, olomoucine, prevents cell cycle progression and resveratrol-induced apoptosis. These results suggest that multiple signaling pathways may underlie the apoptotic death of U251 glioma induced by resveratrol, which warrants further exploration as an anticancer agent in human glioma.

Print Options


Key Research Topics

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.