Abstract Title:

The role of mitochondria in cellular iron-sulfur protein biogenesis and iron metabolism.

Abstract Source:

Biochim Biophys Acta. 2012 May 15. Epub 2012 May 15. PMID: 22609301

Abstract Author(s):

Roland Lill, Bastian Hoffmann, Sabine Molik, Antonio J Pierik, Nicole Rietzschel, Oliver Stehling, Marta A Uzarska, Holger Webert, Claudia Wilbrecht, Ulrich Mühlenhoff

Article Affiliation:

Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, Robert-Koch Str. 6, 35033 Marburg, Germany; Max-Planck-Institut für terrestrische Mikrobiologie, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany.

Abstract:

Mitochondria play a key role in iron metabolism in that they synthesize heme, assemble iron-sulfur (Fe/S) proteins, and participate in cellular iron regulation. Here, we review the latter two topics and their intimate connection. The mitochondrial Fe/S cluster (ISC) assembly machinery consists of 17 proteins that operate in three major steps of the maturation process. First, the cysteine desulfurase complex Nfs1-Isd11 as the sulfur donor cooperates with ferredoxin-ferredoxin reductase acting as an electron transfer chain, and frataxin to synthesize an [2Fe-2S] cluster on the scaffold protein Isu1. Second, the cluster is released from Isu1 and transferred toward apoproteins with the help of a dedicated Hsp70 chaperone system and the glutaredoxin Grx5. Finally, various specialized ISC components assist in the generation of [4Fe-4S] clusters and cluster insertion into specific target apoproteins. Functional defects of the core ISC assembly machinery are signaled to cytosolic or nuclear iron regulatory systems resulting in increased cellular iron acquisition and mitochondrial iron accumulation. In fungi, regulation is achieved by iron-responsive transcription factors controlling the expression of genes involved in iron uptake and intracellular distribution. They are assisted by cytosolic multidomain glutaredoxins which use a bound Fe/S cluster as iron sensor and additionally perform an essential role in intracellular iron delivery to target metalloproteins. In mammalian cells, the iron regulatory proteins IRP1, an Fe/S protein, and IRP2 act in a post-transcriptional fashion to adjust the cellular needs for iron. Thus, Fe/S protein biogenesis and cellular iron metabolism are tightly linked to coordinate iron supply and utilization. This article is part of a Special Issue entitled: Cell Biology of Metals.

Study Type : Review
Additional Links
Additional Keywords : Mitochondria : CK(17) : AC(9)

Print Options


This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.