n/a
Abstract Title:

Salvianolic acid B attenuates doxorubicin-induced ER stress by inhibiting TRPC3 and TRPC6 mediated Caoverload in rat cardiomyocytes.

Abstract Source:

Toxicol Lett. 2017 Jul 5 ;276:21-30. Epub 2017 May 8. PMID: 28495616

Abstract Author(s):

Rong-Chang Chen, Gui-Bo Sun, Jing-Xue Ye, Jian Wang, Miao-di Zhang, Xiao-Bo Sun

Article Affiliation:

Rong-Chang Chen

Abstract:

Doxorubicin (DOX)-induced cardiotoxicity is a clinically complex syndrome that leads to significant pain to cancer survivors. Endoplasmic reticulum (ER) stress has been suggested to be an important contributor to myocardium dysfunction during this phenomenon. Our previous study proved that Salvianolic acid B (Sal B) protected against doxorubicin induced cardiac dysfunction by inhibiting ER stress and cardiomyocyte apoptosis. However, the underlying molecular mechanism is not yet clearly. In this study, we investigated the protective effect and mechanisms of Sal B againest DOX-induced cardiac injury and ER stress in vivo and in vitro. After pretreatment with Sal B (0.25, 0.5, 1mg/kg i.v.) for 7 days, male SD rats were intraperitoneally injected with a single dose of DOX (3mg/kg) every 2 days for three injections. The cardioprotective effect of Sal B was observed 2 weeks after the first administration. Adult rat ventricular myocytes were isolated and treated with Sal B (20μg/ml) for 6h and then exposed in DOX (1μm) for 4h. The cardiomyocyte contractility and the level of intracellular Cawere determined. Sal B ameliorated DOX-induced apoptosis damage in heart tissues. In vitro studies showed that DOX induced adult rat ventricular myocytes contractile dysfunction and intracellular Cahandling derangement, disrupted mitochondrial membrane potential, raised the level of ER stress related proteins. However, Sal B pretreatment suppressed all of these adverse effects of DOX. The effects of Sal B were closely related to the inhibition of transient receptor potential canonical (TRPC) channels, as characterized by inhibiting the expression of TRPC 3 and TRPC6. These results indicate that Sal B protects against DOX-induced cardiac apoptosis and ER stress via TRPC3 and TRPC6 inhibition.

Study Type : Animal Study, In Vitro Study

Print Options


Key Research Topics

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.