Abstract Title:

Selenium-enriched yeast inhibitedβ-amyloid production and modulated autophagy in a triple transgenic mouse model of Alzheimer's disease.

Abstract Source:

Metallomics. 2018 Jul 25. Epub 2018 Jul 25. PMID: 30043821

Abstract Author(s):

Guo-Li Song, Chen Chen, Qiu-Yan Wu, Zhong-Hao Zhang, Rui Zheng, Yao Chen, Shi-Zheng Jia, Jia-Zuan Ni

Article Affiliation:

Guo-Li Song


As the most common cause of progressive intellectual failure in elderly humans, Alzheimer's disease (AD) is pathologically featured by amyloid plaques, synaptic loss, and neurofibrillary tangles. The amyloid plaques are mainly aggregates of amyloidβ-peptide (Aβ), a primary factor contributing to the pathogenesis of AD. Elimination or reduction of the level of Aβ is considered an important strategy in AD treatment. The pharmacotherapeutic efficacy of selenium (Se), an essential biological trace element for mammalian species, has been confirmed in a number of experimental models of neurodegenerative diseases. Selenium-enriched yeast (Se-yeast) is commonly used as a nutritional supplement for Se. In this study, we investigated the effects and underlying mechanisms of Se-yeast on Aβ pathology in a 4-month-old triple transgenic mouse model of AD (3×Tg-AD mice). The administration of Se-yeast attenuated the deposition of Aβ in the brains of AD mice, which was concomitant with decreased levels of LC3II. The Se-yeast treatment decreased the level of amyloid-protein precursor (APP), downregulated the activity of AMP-activated proteinkinase (AMPK) and upregulated the activity of AKT/mTOR/p70S6K. Furthermore, the levels of p62 also significantly decreased, and the cathepsin D levels increased, accompanied by increased turnover of Aβ and APP in Se-yeast-treated AD mice. In addition to decreasing the generation of Aβ, Se-yeast also inhibited the initiation of autophagy by modulating the AMPK/AKT/mTOR/p70S6K signaling pathway and enhanced autophagic clearance, thus reducing the burden of Aβ accumulation in the brains of AD mice. Our results further highlight the potential therapeutic effects of Se-yeast on AD.

Study Type : Transgenic Animal Study

Print Options

Key Research Topics

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.