Abstract Title:

Ingestion of Sodium Bicarbonate (NaHCO3) Following a Fatiguing Bout of Exercise Accelerates Post-Exercise Acid-Base Balance Recovery and Improves Subsequent High-Intensity Cycling Time to Exhaustion.

Abstract Source:

Int J Sport Nutr Exerc Metab. 2017 May 22:1-25. Epub 2017 May 22. PMID: 28530505

Abstract Author(s):

Lewis A Gough, Steven Rimmer, Callum J Osler, Matthew F Higgins

Article Affiliation:

Lewis A Gough


This study evaluated the ingestion of sodium bicarbonate (NaHCO3) on post-exercise acid-base balance recovery kinetics and subsequent high-intensity cycling time to exhaustion. In a counterbalanced, crossover design, nine healthy and active males (age: 23±2 years, height: 179±5 cm, body mass: 74±9 kg, peak mean minute power (WPEAK) 256±45 W, peak oxygen uptake (V̇O2PEAK) 46±8 ml.kg(-1).min(-1)) performed a graded incremental exercise test, two familiarisation and two experimental trials. Experimental trials consisted of cycling to volitional exhaustion (TLIM1) at 100% WPEAK on two occasions (TLIM1 and TLIM2) interspersed by a 90 min passive recovery period. Using a double blind approach, 30 min into a 90 min recovery period participants ingested either 0.3 g.kg(-1) body mass sodium bicarbonate (NaHCO3) or a placebo (PLA) containing 0.1 g.kg(-1) body mass sodium chloride (NaCl) mixed with 4 ml.kg(-1) tap water and 1 ml.kg(-1) orange squash. The mean differences between TLIM2 and TLIM1 was larger for PLA compared to NaHCO3 (-53±53 vs. -20±48 s; P=0.008, d=0.7, CI=-0.3, 1.6), indicating superior subsequent exercise time to exhaustion following NaHCO3. Blood lactate [BLa(-)] was similar between treatments post TLIM1, but greater for NaHCO3 post TLIM2 and 5 min post TLIM2. Ingestion of NaHCO3 induced marked increases (P<0.01) in both blood pH (+0.07±0.02, d=2.6, CI=1.2, 3.7) and bicarbonate ion concentration [HCO3(-)] (+6.8±1.6 mmo.l(-1), d=3.4, CI=1.8, 4.7) compared to the PLA treatment, prior to TLIM2. It is likely both the acceleration of recovery, and the marked increases of acid-base after TLIM1 contributed to greater TLIM2 performancecompared to the PLA condition.

Study Type : Human Study

Print Options

Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2022 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.