The soy isoflavone genistein reduces eosinophilic airway inflammation, indicating its role in the treatment of asthma. - GreenMedInfo Summary
A mechanism of benefit of soy genistein in asthma: inhibition of eosinophil p38-dependent leukotriene synthesis.
Clin Exp Allergy. 2008 Jan;38(1):103-12. Epub 2007 Nov 2. PMID: 17979994
BACKGROUND: Dietary intake of the soy isoflavone genistein is associated with reduced severity of asthma, but the mechanisms responsible for this effect are unknown. OBJECTIVE: To determine whether genistein blocks eosinophil leukotriene C(4) (LTC(4)) synthesis and to evaluate the mechanism of this effect, and to assess the impact of a 4-week period of soy isoflavone dietary supplementation on indices of eosinophilic inflammation in asthma patients. METHODS: Human peripheral blood eosinophils were stimulated in the absence and presence of genistein, and LTC(4) synthesis was measured. 5-lipoxygenase (5-LO) nuclear membrane translocation was assessed by confocal immunofluorescence microscopy. Mitogen-activated protein (MAP) kinase activation was determined by immunoblot. Human subjects with mild-to-moderate persistent asthma and minimal or no soy intake were given a soy isoflavone supplement (100 mg/day) for 4 weeks. The fraction of exhaled nitric oxide (FE(NO)) and ex vivo eosinophil LTC(4) production were assessed before and after the soy isoflavone treatment period. RESULTS: Genistein inhibited eosinophil LTC(4) synthesis (IC(50) 80 nm), blocked phosphorylation of p38 MAP kinase and its downstream target MAPKAP-2, and reduced translocation of 5-LO to the nuclear membrane. In patients with asthma, following 4 weeks of dietary soy isoflavone supplementation, ex vivo eosinophil LTC(4) synthesis decreased by 33% (N=11, P=0.02) and FE(NO) decreased by 18% (N=13, P=0.03). CONCLUSION: At physiologically relevant concentrations, genistein inhibits eosinophil LTC(4) synthesis in vitro, probably by blocking p38- and MAPKAP-2-dependent activation of 5-LO. In asthma patients, dietary soy isoflavone supplementation reduces eosinophil LTC(4) synthesis and eosinophilic airway inflammation. These results support a potential role for soy isoflavones in the treatment of asthma.