This study proved the anti-inflammatory activity of green tea over black tea extracts and equal to that of indomethacin in AIA rat model. - GreenMedInfo Summary
Anti-inflammatory activity of green versus black tea aqueous extract in a rat model of human rheumatoid arthritis.
Int J Rheum Dis. 2015 May 12. Epub 2015 May 12. PMID: 25964045
Gamal Ramadan
AIM: Recently, there has been an increasing interest in tea (Camellia sinensis) as a protective agent against inflammatory diseases. Here, we evaluated/compared the anti-inflammatory activity of two different doses (0.5 and 1.0 g/kg body weight) of green tea aqueous extract (GTE, rich in catechins) and black tea aqueous extract (BTE, rich in theaflavins and thearubigins) in rat adjuvant-induced arthritis (AIA).
METHODS: Adjuvant-induced arthritis rat model received orally/daily distilled water as vehicle, indomethacin (1.0 mg/kg body weight; a non-steroidal/anti-inflammatory drug), or tea aqueous extracts (for 28 or 14 consecutive days starting from day 0 or 14 of arthritis induction, respectively).
RESULTS: The present study showed that only the high dose of GTE (from day 0) significantly alleviated (P < 0.05-0.001) all complications shown in arthritic rats, including synovial joint inflammation, elevation in erythrocyte sedimentation rate, blood leukocytosis (due to lymphocytosis and neutrocytosis), and changes in weight/cellularity of lymphoid organs. The anti-arthritic activity of the high doseof GTE (from day 0) was comparable (P > 0.05) with that of indomethacin (12.9-53.8 vs. 9.5-48.4%, respectively) and mediated by significantly decreasing and down-regulating (P < 0.001) the systemic production of pro-inflammatory cytokines and the expression of chemokine receptor-5 in synovial tissues, respectively. Moreover, the anti-arthritic activity of tea aqueous extracts was in the following order: high dose of GTE>low dose of GTE≥ high dose of BTE>low dose of BTE.
CONCLUSION: The present study proved the anti-inflammatory activity of GTE over BTE and equal to that of indomethacin in AIA rat model.