n/a
Abstract Title:

Anticancer effects of asiatic acid against doxorubicin-resistant breast cancer cells via an AMPK-dependent pathway in vitro.

Abstract Source:

Phytomedicine. 2021 Sep 21 ;92:153737. Epub 2021 Sep 21. PMID: 34560519

Abstract Author(s):

Zhu Zhu, Liao Cui, Jing Yang, Chi Teng Vong, Yuanjia Hu, Jianbo Xiao, Ging Chan, Zhiwei He, Zhangfeng Zhong

Article Affiliation:

Zhu Zhu

Abstract:

BACKGROUND AND PURPOSE: Asiatic acid is one of the active compounds isolated from Centella asiatica and has been used to treat many diseases, including hypertension, pulmonary fibrosis, and cancer. It exhibits anticancer effects in many cancers, such as ovarian, lung and colon cancer; however, its anticancer effects in breast cancer and the underlying mechanism are not fully understood. Chemoresistance is often induced after the use of chemotherapy, and it is a challenging problem in cancer therapy. The effects of asiatic acid on chemoresistance in breast cancer have never been studied. Therefore, the aim of the present study was to examine the anticancer effects of asiatic acid in doxorubicin-resistant breast cancer MCF-7 cells.

METHODS: The cells were incubated with asiatic acid at 0-160μM for 2-24 h. Cell viability and cytotoxicity were evaluated by 3-[4, 5-dimethyl-2-thiazolyl]-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assays. Florescent images were taken using a confocal microscope. P-gp function and apoptosis assays were performed using flow cytometry. Caspase activity was measured with the Caspase-Glo™ Assay System. The phosphorylation and expression of relevant proteins were assessed by western blots. Molecular docking was performed and scored by AutoDock. Cellular thermal shift assay (CETSA) was applied for experimental valuation.

RESULTS: Our data demonstrated that asiatic acid induced cell death in multiple ways, including reactive oxygen species production, adenosine triphosphate (ATP) content reduction, and adaptive immunity balance via intrinsic apoptosis, AMP-activated protein kinase (AMPK), programmed death-ligand 1 (PD-L1), and indirect nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) transcriptional pathways, using experimental validation and in silico analysis. Moreover, asiatic acid also enhanced the sensitivity of doxorubicin-resistant MCF-7 cells to doxorubicin by improving P-glycoprotein (P-gp) function.

CONCLUSIONS: This study provides evidence that asiatic acid has strong anticancer effects to reverse multidrug resistance and could be developed as a promising adjuvant drug for the treatment of chemoresistant cancer.

Study Type : In Vitro Study

Print Options


Key Research Topics

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.