Abstract Title:

Highly delayed systemic translocation of aluminum-based adjuvant in CD1 mice following intramuscular injections.

Abstract Source:

J Inorg Biochem. 2015 Nov ;152:199-205. Epub 2015 Jul 22. PMID: 26384437

Abstract Author(s):

Guillemette Crépeaux, Housam Eidi, Marie-Odile David, Eleni Tzavara, Bruno Giros, Christopher Exley, Patrick A Curmi, Christopher A Shaw, Romain K Gherardi, Josette Cadusseau

Article Affiliation:

Guillemette Crépeaux


Concerns regarding vaccine safety have emerged following reports of potential adverse events in both humans and animals. In the present study, alum, alum-containing vaccine and alum adjuvant tagged with fluorescent nanodiamonds were used to evaluate i) the persistence time at the injection site, ii) the translocation of alum from the injection site to lymphoid organs, and iii) the behavior of adult CD1 mice following intramuscular injection of alum (400μg Al/kg). Results showed for the first time a strikingly delayed systemic translocation of adjuvant particles. Alum-induced granuloma remained for a very long time in the injected muscle despite progressive shrinkage from day 45 to day 270. Concomitantly, a markedly delayed translocation of alum to the draining lymph nodes, major at day 270 endpoint, was observed. Translocation to the spleen was similarly delayed (highest number of particles at day 270). In contrast to C57BL/6J mice, no brain translocation of alum was observed by day 270 in CD1 mice. Consistently neither increase of Al cerebral content, nor behavioral changes were observed. On the basis of previous reports showing alum neurotoxic effects in CD1 mice, an additional experiment was done, and showed early brain translocation at day 45 of alum injected subcutaneously at 200 μg Al/kg. This study confirms the striking biopersistence of alum. It points out an unexpectedly delayed diffusion of the adjuvant in lymph nodes and spleen of CD1 mice, and suggests the importance of mouse strain, route of administration, and doses, for future studies focusing on the potential toxic effects of aluminum-based adjuvants.

Study Type : Animal Study

Print Options

Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2022 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.