Article Publish Status: FREE
Abstract Title:

Effects of Root Extract ofin Mice with High-Fat-Diet/Streptozotocin-Induced Diabetes and C2C12 Myoblast Differentiation.

Abstract Source:

ACS Omega. 2021 Oct 19 ;6(41):26959-26968. Epub 2021 Oct 11. PMID: 34693116

Abstract Author(s):

Piao Wang, Yi Liu, Tong Zhang, Cheng Yin, Seok Yong Kang, Su Jin Kim, Yong-Ki Park, Hyo Won Jung

Article Affiliation:

Piao Wang


Type 2 diabetes is the most common type of diabetes and causes a decline in muscle quality. In this study, we investigated the effects of the root extract of(MORE) on skeletal muscle damage in mice with high-fat-diet (HFD)/streptozotocin (STZ)-induced diabetes and the expression of myogenic and biogenesis regulatory proteins in C2C12 myoblast differentiation. An in vivo model comprised C57BL/6N mice fed HFD for 8 weeks, followed by a single injection of STZ at 120 mg/kg. MORE was administered at 100 and 200 mg/kg once daily (p.o.) for 4 weeks. The changes in body weight, calorie intake, and serum levels of glucose, insulin, total cholesterol (TCHO), HDL-cholesterol (HDL-C), LDL-cholesterol (LDL-C), aspartate transaminase (AST), and alanine aminotransferase (ALT) were investigated in diabetic mice. The histological changes in the gastrocnemius muscle were observed by H&E staining, and then the myofiber size was measured. The expression of the myogenic (MHC, myogenin, and MyoD) and biogenesis (PGC-1α, SIRT1, NRF1, and TFAM) regulatory proteins was examined in the muscle tissues and differentiated C2C12 myoblasts by Western blot, respectively. The administration of MORE at 200 mg/kg in mice with HFD/STZ-induced diabetes significantly reduced weight gains, calorie intake, insulin resistance, and serum levels of glucose, TCHO, LDL-C, AST, and ALT. MORE administration at 100 and 200 mg/kg significantly increased serum insulin and HDL-C levels in diabetic mice. In addition, MORE significantly increased the expression of MHC, myogenin, MyoD, PGC-1α, SIRT1, NRF1, and TFAM in muscle tissues aswell as increased the myofiber size in diabetic mice. In C2C12 myoblast differentiation, MORE treatment at 0.5, 1, and 2 mg/mL significantly increased the expression of myogenic and biogenesis regulatory proteins in a dose-dependent manner. MORE improves diabetes symptoms in mice with HFD/STZ-induced diabetes by improving muscle function. This suggests that MORE could be used to prevent or treat diabetes along with muscle disorders.

Study Type : Animal Study

Print Options

Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2022 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.