Abstract Title:

Dietary organic isothiocyanates are cytotoxic in human breast cancer MCF-7 and mammary epithelial MCF-12A cell lines.

Abstract Source:

Exp Biol Med (Maywood). 2004 Sep;229(8):835-42. PMID: 15337839

Abstract Author(s):

Elaine Tseng, Elizabeth A Scott-Ramsay, Marilyn E Morris

Article Affiliation:

Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, The State University of New York, Amherst, New York 14260, USA.


Organic isothiocyanates (ITCs) are dietary components present in cruciferous vegetables. The purpose of this investigation was to examine the cytotoxicity of 1-naphthyl isothiocyanate (NITC), benzyl isothiocyanate (BITC), beta-phenethyl isothiocyanate (PEITC), and sulforaphane in human breast cancer MCF-7 and human mammary epithelium MCF-12A cell lines, as well as in a second human epithelial cell line, human kidney HK-2 cells. The cytotoxicity of NITC, BITC, PEITC, and sulforaphane, as well as the cytotoxicity of the chemotherapeutic agents daunomycin (DNM) and vinblastine (VBL), were examined in MCF-7/sensitive (wt), MCF-7/Adr (which overexpresses P-glycoprotein), MCF-12A, and HK-2 cells. Cell growth was determined by a sulforhodamine B assay. The IC50 values for DNM and VBL in MCF-7/Adr cells were 7.12 +/- 0.42 microM and 0.106 +/- 0.004 microM (mean +/- SE) following a 48-hr exposure; IC50 values for BITC, PEITC, NITC, and sulforaphane were 5.95 +/- 0.10, 7.32 +/- 0.25, 77.9 +/- 8.03, and 13.7 +/- 0.82 microM, respectively, with similar values obtained in MCF-7/wt cells. Corresponding values for BITC, PEITC, NITC, and sulforaphane in MCF-12A cells were 8.07 +/- 0.29, 7.71 +/- 0.07, 33.6 +/- 1.69, and 40.5 +/- 1.25 microM, respectively. BITC and PEITC can inhibit the growth of human breast cancer cells as well as human mammary epithelium cells at concentrations similar to those of the chemotherapeutic drug DNM. Sulforaphane and NITC exhibited higher IC50 values. The effect of these ITCs on cell growth may contribute to the cancer chemopreventive properties of ITCs by suppressing the growth of preclinical tumors, and may indicate a potential use of these compounds as chemotherapeutic agents in cancer treatment.

Study Type : In Vitro Study

Print Options

Key Research Topics

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.