Article Publish Status: FREE
Abstract Title:

Sulforaphane reduces adipose tissue fibrosis via promoting M2 macrophages polarization in HFD fed-mice.

Abstract Source:

Biochim Biophys Acta Mol Cell Res. 2023 Nov 15 ;1871(2):119626. Epub 2023 Nov 15. PMID: 37977492

Abstract Author(s):

Zhenzhen Zhang, Huali Chen, Cheng Pan, Rui Li, Wangsheng Zhao, Tianzeng Song

Article Affiliation:

Zhenzhen Zhang


Adipose tissue fibrosis has been identified as a novel contributor to the pathomechanism of obesity associated metabolic disorders. Sulforaphane (SFN) has been shown to have an anti-obesity effect. However, the impact of SFN on adipose tissue fibrosis is still not well understood. In this study, obese mice induced by high-fat diets (HFD) were used to examine the effects of SFN on adipose tissue fibrosis. According to the current findings, SFN dramatically enhanced glucose tolerance and decreased body weight in diet-induced-obesity (DIO) mice. Additionally, SFN therapy significantly reduced extracellular matrix (ECM) deposition and altered the expression of genes related to fibrosis. Furthermore, SFN also reduced inflammation and promoted macrophages polarization towards to M2 phenotype in adipose tissue, which protected adipose tissue from fibrosis. Notably, SFN-mediated nuclear factor E2-related factor 2 (Nrf2) activation was crucial in decreasing adipose tissue fibrosis. These results implied that SFN had favorable benefits in adipose tissue fibrosis, which consequently ameliorates obesity-related metabolic problems. Our research provides new treatment strategies for obesity and associated metabolic disorders.

Study Type : Animal Study

Print Options

Key Research Topics

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.