Abstract Title:

Sulforaphane induces cell cycle arrest by protecting RB-E2F-1 complex in epithelial ovarian cancer cells.

Abstract Source:

Mol Cancer. 2010;9:47. Epub 2010 Mar 2. PMID: 20196847

Abstract Author(s):

Christopher S Bryant, Sanjeev Kumar, Sreedhar Chamala, Jay Shah, Jagannath Pal, Mahdi Haider, Shelly Seward, Aamer M Qazi, Robert Morris, Assaad Semaan, Masood A Shammas, Christopher Steffes, Ravindra B Potti, Madhu Prasad, Donald W Weaver, Ramesh B Batchu

Article Affiliation:

Department of Surgery, Wayne State University, 4100 John R Street, Detroit, MI 48201, USA.

Abstract:

BACKGROUND: Sulforaphane (SFN), an isothiocyanate phytochemical present predominantly in cruciferous vegetables such as brussels sprout and broccoli, is considered a promising chemo-preventive agent against cancer. In-vitro exposure to SFN appears to result in the induction of apoptosis and cell-cycle arrest in a variety of tumor types. However, the molecular mechanisms leading to the inhibition of cell cycle progression by SFN are poorly understood in epithelial ovarian cancer cells (EOC). The aim of this study is to understand the signaling mechanisms through which SFN influences the cell growth and proliferation in EOC. RESULTS: SFN at concentrations of 5-20 microM induced a dose-dependent suppression of growth in cell lines MDAH 2774 and SkOV-3 with an IC50 of ~8 microM after a 3 day exposure. Combination treatment with chemotherapeutic agent, paclitaxel, resulted in additive growth suppression. SFN at ~8 microM decreased growth by 40% and 20% on day 1 in MDAH 2774 and SkOV-3, respectively. Cells treated with cytotoxic concentrations of SFN have reduced cell migration and increased apoptotic cell death via an increase in Bak/Bcl-2 ratio and cleavage of procaspase-9 and poly (ADP-ribose)-polymerase (PARP). Gene expression profile analysis of cell cycle regulated proteins demonstrated increased levels of tumor suppressor retinoblastoma protein (RB) and decreased levels of E2F-1 transcription factor. SFN treatment resulted in G1 cell cycle arrest through down modulation of RB phosphorylation and by protecting the RB-E2F-1 complex. CONCLUSIONS: SFN induces growth arrest and apoptosis in EOC cells. Inhibition of retinoblastoma (RB) phosphorylation and reduction in levels of free E2F-1 appear to play an important role in EOC growth arrest.

Print Options


This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.