n/a
Abstract Title:

Synergetic inhibition of daidzein and regular exercise on breast cancer in bearing-4T1 mice by regulating NK cells and apoptosis pathway.

Abstract Source:

Life Sci. 2020 Mar 15 ;245:117387. Epub 2020 Jan 30. PMID: 32007575

Abstract Author(s):

Bin Wang, Heshan Xu, Xiaoyin Hu, Wenyu Ma, Jian Zhang, Yuanfeng Li, Min Yu, Yaru Zhang, Xuegang Li, Xiaoli Ye

Article Affiliation:

Bin Wang

Abstract:

The aim of this study was to investigate the inhibition of daidzein or/and regular exercise on breast cancer and to reveal the potential biological mechanisms. BALB/c mice pretreated with regular exercise training for 20 days (15 m/min, 60 min/d) were orthotopically transplanted with mouse breast cancer cells (4T1), and then treated with daidzein (145 mg/kg) by gavage for another 22 days. Results showed that exercise or daidzein inhibited tumor growth in mice to a different degree. Particularly, co-treatment with exercise and daidzein showed an obviously synergistic inhibition on the tumor growth (P < 0.01), compared with the tumor control. Further researches indicated that the combination of exercise and daidzein synergistically mobilized and redistributed natural killer cells through upregulating the level of epinephrine and interleukin-6. Moreover, exercise combined with daidzein induces apoptosis in cancer cells via Fas/FasL-initiated mitochondrial apoptosis signaling pathway. These results suggested that regular exercise combined with daidzein may explore a candidate way to prevent and treat the breast cancer.

Study Type : Animal Study

Print Options


Key Research Topics

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.