Article Publish Status: FREE
Abstract Title:

Tanshinone IIA Promotes M2 Microglia by ERβ/IL-10 Pathway and Attenuates Neuronal Loss in Mouse TBI Model.

Abstract Source:

Neuropsychiatr Dis Treat. 2020 ;16:3239-3250. Epub 2020 Dec 31. PMID: 33408474

Abstract Author(s):

Mingrui Chen, Qiulin Chen, Tao Tao

Article Affiliation:

Mingrui Chen


Purpose: Traumatic brain injury (TBI) is a major cause of morbidity and mortality worldwide. Increasing evidence indicates that activated microglia play an important role in the inflammatory response in TBI. Inhibiting M1 and stimulating M2 activated microglia have protective effects in several animal models of central nervous system (CNS) disorders. In the present study, we investigated whether tanshinone IIA (TNA) protects neurons by shifting microglia polarization in a mouse TBI model and further investigated the mechanism in vitro.

Materials and Methods: Forty C57BL/6 mice were used to investigate the effect of TNA on microglia polarization in TBI. BV-2 cells were used to examine the mechanism of TNA in regulating microglia polarization.

Results: Normal saline (NS), TNA and the combination of TNA with ICI 182,780 (ICI, an estrogen receptor antagonist) were used to treat the TBI mice. After TBI, mice from each group demonstrated functional improvement. The improvement rate in mice treated with TNA was faster than other groups. ICI partially reversed the benefits from TNA treatment. TNA treatment significantly reduced TBI-induced neuronal loss. The number of microglia after TBI was not significantly changed by TNA treatment. However, TNA treatment significantly decreased M1 macrophage markers (iNOS, TNFα and IL-1β) and increased M2 macrophage markers (CD206, arginase 1 and Ym1). This effect was partially abolished by ICI. TNA treatment downregulated M1 macrophage markers and upregulated M2 macrophage markers in BV-2 cells under LPS stimulation. IL-10 was significantly increased by TNA treatmentwithout a significantly change of IL-4 and IL-13 expression. IL-10 knockdown completely abolished the effect of TNA on microglial M2 polarization.

Conclusion: Taken together, our data demonstrated that TNA attenuates neuronal loss in mouse TBI model and promotes M2 microglia by ERβ/IL-10 pathway. Thus, TNA could be a potential drug for TBI and/or the disorders that caused by microglial over-activation in CNS.

Study Type : Animal Study

Print Options

Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2022 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.