Article Publish Status: FREE
Abstract Title:

Tanshinone IIA improves hypoxic ischemic encephalopathy through TLR‑4‑mediated NF‑κB signal pathway.

Abstract Source:

Mol Med Rep. 2018 Aug ;18(2):1899-1908. Epub 2018 Jun 26. PMID: 29956801

Abstract Author(s):

Chengzhi Fang, Lili Xie, Chunmei Liu, Chunhua Fu, Wei Ye, Hong Liu, Binghong Zhang

Article Affiliation:

Chengzhi Fang


Hypoxic ischemic encephalopathy (HIE) is the most common brain injury following hypoxia and/or ischemia caused by various factors during the perinatal period, resulting in detrimental neurological deficits in the nervous system. Tanshinone IIA (Tan‑IIA) is a potential agent for the treatment of cardiovascular and cerebrovascular diseases. In this study, the efficacy of Tan‑IIA was investigated in a newborn mouse model of HIE. The dynamic mechanism of Tan‑IIA was also investigated in the central nervous system of neonate mice. Intravenous injection of Tan‑IIA (5 mg/kg) was administered and changes in oxidative stress, inflammation and apoptosis‑associated proteins in neurons. Histology and immunohistochemistry was used to determine infarct volume and the number of damaged neurons by Fluoro‑Jade C staining. The effects of Tan‑IIA on mice with HIE were evaluated by body weight, brain water content, neurobehavioral tests and blood‑brain barrier permeability. The results demonstrated that the apoptosis rate was decreased following Tan‑IIA administration. Expression levels of pro‑apoptotic proteins, caspase‑3 andcaspase‑9 and P53 were downregulated. Expression of Bcl‑2 anti‑apoptotic proteins was upregulated by Tan‑IIA treatment in neuro. Results also found that Tan‑IIA treatment decreased production of inflammatory cytokines such as interleukin‑1, tumor necrosis factor‑α, C‑X‑C motif chemokine 10, and chemokine (C‑C motif) ligand 12. Oxidative stress was also reduced by Tan‑IIA in neurons, as determined by the expression levels of superoxide dismutase, glutathione and catalase, and the production of reactive oxygen species. The results demonstrated that Tan‑IIA treatment reduced the infarct volume and the number of damaged neurons. Furthermore, body weight, brain water content and blood‑brain barrier permeability were markedly improved by Tan‑IIA treatment of newborn mice following HIE. Furthermore, the results indicated that Tan‑IIA decreased Toll‑like receptor‑4 (TLR‑4) and nuclear factor‑κB (NF‑κB) expression in neurons. TLR‑4 treatment of neuronal cell in vitro addition stimulated NF‑κB activity, and further enhanced the production of inflammatory cytokines and oxidative stress levels in neurons. In conclusion, these results suggest that Tan‑IIA treatment is beneficial for improvement of HIE through TLR‑4‑mediated NF‑κB signaling.

Print Options

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2022 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.