n/a
Abstract Title:

The therapeutic and protective effects of bee pollen against prenatal methylmercury induced neurotoxicity in rat pups.

Abstract Source:

Metab Brain Dis. 2020 Jan ;35(1):215-224. Epub 2019 Oct 17. PMID: 31625070

Abstract Author(s):

Abir Ben Bacha, Al-Orf Norah, May Al-Osaimi, Abdel Halim Harrath, Lamjed Mansour, Afaf El-Ansary

Article Affiliation:

Abir Ben Bacha

Abstract:

The current study evaluated the protective and therapeutic potency of bee pollen in ameliorating the toxic effects of methylmercury (MeHg), by measuring certain biochemical parameters related to neurotransmission, neuroinflammation, apoptosis, and glutamate excitotoxicity in the male neonate brain. Healthy, pregnant female rats (N = 40) were randomly divided into 5 groups, each comprising10 male neonates, as follows: (i) neonates delivered by control mothers; (ii) neonates delivered by MeHg-treated mothers who received 0.5 mg/kg BW/day MeHg via drinking water from gestational day 7 till postnatal day 7; (iii) neonates delivered by bee pollen treated mothers who received 200-mg/kg BW bee pollen from postnatal day 0 for 4 weeks; (iv) protective group of neonates delivered by MeHg and bee pollen-treated mothers, who continued to receive bee pollen until day 21 at the same dose, and (v) therapeutic group of neonatesdelivered by MeHg- treated mothers followed by bee pollen treatment, wherein they received 200-mg/kg BW bee pollen from postnatal day 0 for 4 weeks. Selected biochemical parameters in brain homogenates from each group were measured. MeHg-treated groups exhibited various signs of brain toxicity, such as a marked reduction in neurotransmitters (serotonin (5-HT), nor-adrenalin (NA), dopamine (DA)) and gamma aminobutyric acid (GABA) and elevated levels of interferon gamma (IFN-γ), caspase-3, and glutamate (Glu). Bee pollen effectively reduced the neurotoxic effects of MeHg. Minimal changes in all measured parameters were observed in MeHg-treated animals compared to the control group. Therefore, bee pollen may safely improve neurotransmitter defects, inflammation, apoptosis, and glutamate excitotoxicity.

Print Options


Key Research Topics

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.